Enteroinvasive Escherichia coli (EIEC) causes dysentery; however, it is less widely reported than other etiological agents in studies of diarrhea worldwide. Between August 2003 and July 2005, stool samples were collected in case-control studies in 22 rural communities in northwestern Ecuador. Infection was assessed by PCR specific for LT and STa genes of enterotoxigenic E. coli (ETEC), the bfp gene of enteropathogenic E. coli (EPEC), and the ipaH gene of both enteroinvasive E. coli and Shigellae. The pathogenic E. coli most frequently identified were EIEC (3.2 cases/100 persons) and Shigellae (1.5 cases/100 persons), followed by ETEC (1.3 cases/100 persons), and EPEC (0.9 case/100 persons). EIEC exhibited similar risk-factor relationships with other pathotypes analyzed but different age-specific infection rates. EIEC was the predominant diarrheagenic bacteria isolated in our community-based study, a unique observation compared with other regions of the world.
The evolution of antibiotic resistance (AR) increases treatment cost and probability of failure, threatening human health worldwide. The relative importance of individual antibiotic use, environmental transmission and rates of introduction of resistant bacteria in explaining community AR patterns is poorly understood. Evaluating their relative importance requires studying a region where they vary. The construction of a new road in a previously roadless area of northern coastal Ecuador provides a valuable natural experiment to study how changes in the social and natural environment affect the epidemiology of resistant Escherichia coli. We conducted seven bi-annual 15 day surveys of AR between 2003 and 2008 in 21 villages. Resistance to both ampicillin and sulphamethoxazole was the most frequently observed profile, based on antibiogram tests of seven antibiotics from 2210 samples. The prevalence of enteric bacteria with this resistance pair in the less remote communities was 80 per cent higher than in more remote communities (OR = 1.8 [1.3, 2.3]). This pattern could not be explained with data on individual antibiotic use. We used a transmission model to help explain this observed discrepancy. The model analysis suggests that both transmission and the rate of introduction of resistant bacteria into communities may contribute to the observed regional scale AR patterns, and that village-level antibiotic use rate determines which of these two factors predominate. While usually conceived as a main effect on individual risk, antibiotic use rate is revealed in this analysis as an effect modifier with regard to community-level risk of resistance.
Diarrheal risk associated with Plesiomonas shigelloides infection was assessed in rural communities in northwestern Ecuador during 2004–2008. We found little evidence that single infection with P. shigelloides is associated with diarrhea but stronger evidence that co-infection with rotavirus causes diarrhea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.