Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
This work presents a watermarking algorithm applied to medical images by using the Steered Hermite Transform (SHT), the Singular Value Decomposition (SVD), and the Jigsaw transform (JS). The principal objective is to protect the patient's information using imperceptible watermarking and preserve its diagnosis. Thus, the watermark imperceptibility is achieved using the high-order Steered Hermite coefficients, whereas the SVD decomposition and the JS ensure the watermark against attacks. We use the medicine symbol Caduceus as a watermark. The metrics employed to evaluate the algorithm's performance are the Peak Signal-to-Noise Ratio (PSNR), the Mean Structural Similarity Index (MSSIM), and the Normalized Cross-Correlation (NCC). The evaluation metrics over the watermarked image show that it does not suffer quantitative and qualitative changes, and the extracted watermark was recovered successfully with high PSNR values. In addition, several watermark extraction tests were performed against geometric and common processing attacks. These tests show that the proposed algorithm is robust under critical conditions of attacks, for example, against nonlinear smoothing (median filter), high noise addition (Gaussian and Salt & Pepper noise), high compression rates (JPEG compression), rotation between 0 to 180 degree, and translations up to 100 pixels.
This paper presents a watermarking method in the spatial domain with HVS-imperceptibility for High Dynamic Range (HDR) images. The proposed method combines the content readability afforded by invisible watermarking with the visual ownership identification afforded by visible watermarking. The HVS-imperceptibility is guaranteed thanks to a Luma Variation Tolerance (LVT) curve, which is associated with the transfer function (TF) used for HDR encoding and provides the information needed to embed an imperceptible watermark in the spatial domain. The LVT curve is based on the inaccuracies between the non-linear digital representation of the linear luminance acquired by an HDR sensor and the brightness perceived by the Human Visual System (HVS) from the linear luminance displayed on an HDR screen. The embedded watermarks remain imperceptible to the HVS as long as the TF is not altered or the normal calibration and colorimetry conditions of the HDR screen remain unchanged. Extensive qualitative and quantitative evaluations on several HDR images encoded by two widely-used TFs confirm the strong HVSimperceptibility capabilities of the method, as well as the robustness of the embedded watermarks to tone mapping, lossy compression, and common signal processing operations. INDEX TERMS HDR, invisible watermarking, visible watermarking, LVT curve, HVS-imperceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.