Mahakam is a mature gas and oil field that has been in operation since 1966, covering an area of approximately 1500 square kilometers. It is located in East Kalimantan Province, Indonesia and has 7 operating fields. Tunu, Tambora and Handil are fields within the swamp shallow water (Delta), whereas Bekapai, Peciko, Sisi Nubi and South Mahakam are offshore fields with water depths ranging from 45 to 80 meters. The diverse setting of environments requires different methods of site preparation, construction, drilling and logistic. The drilling industrialization necessitates agile and complex well preparation especially in the Deltaic environment, with around 70 wells drilled with three swamp barge rigs each year. In recent drilling development in both Tunu and Handil fields, more shallow wells were drilled. These wells were drilled in the swamp with heavy sedimentation and/or sand banks which necessitated a large amount of dredging and required months of preparation whereas the drilling operation took up to 3 days per wells. The entire well preparation process requires planning, monitoring, and the participation of many team in different entities. Each entity has its own version of well planning database, resulting in data disagreement and lack of data integrity. Thousands of emails are being send and meetings are being organized to guarantee that operations runs well. Due to lack of trustworthy data, personnel movement or team reorganization, it has become serious issues. In 2016, company decided to start the digitalization efforts, by approaching various service company who provides the well planning software. It needed customization to match the corporate needs. However since the digitalization has not yet commonly used by most company, it was then not user friendly, thus several individuals were hesitant to utilize it. An internal team created an application in early 2019. As the business requirement & working flowchart, the team decided to have a clean and mobile-ready yet less complicated form that also enables team collaboration during the design. This ensures that all users, employee from any generation (X, Y, and Z) able to use and enter valid information. Equipped with map visualization, the related entities will be able to have better quick analysis on the condition surrounding wellhead position. The application also implements an adjustable workflow system that able to follow the dynamic of organization structure, ensure each of well planning task is assigned to the correct team. Push notifications are also an important element in this application for keeping the entire team up to date. The application also featured a discussion board and file sharing function, allowing each team to exchange information or files. The manual email exchange has been minimized, and the meeting hour has been reduced significantly. The errors are simply identified and fixed in a single integrated database. The application is continuously improved from well planning only in its early stages into well design to accommodate the whole drilling industrialization process.
Tunu is a mature giant gas and condensate field locate in Mahakam Delta, East Kalimantan, Indonesia. The field has been in development for almost 30 years and currently has been considered as a mature field where to put a state of an economic well has become more challenging nowadays. The deeper zone of Tunu has no longer been considered as profitable to be produced and the current focus is more on the widespread shallow gas pocket located in the much shallower zone of Tunu. One phase well is architecture without 9-5/8" surface casing. OPW is one-section drilling using a diverter mode from surface to TD without using BOP. Historical for OPW is began from 2018, where drilling reservoir section using diverter mode in two-phase. In 2018 also succeeded in performing perforated surface casing. Due successfully in drilling operation using diverter and perforated surface casing, in 2019 drilling trials for OPW were carried out. Until now, the OPW architecture has become one of the common architecture used in drilling operations as an optimization effort. Until December 2020 PHM has completed 15+ OPW wells. A general comparison of OPW and SLA well is at the cost of constructing a well of approximately 200,000 - 300,000 US$. The disadvantages of OPW wells are more expensive in the mud and cement section when using a 9-1/2" hole, but in terms of the duration, OPW drilling time is more efficient up to 2-3 days. If viewed from the integrity of the OPW wells, from 15 OPW wells that have been completed, only 2 of them have SCP.
Total E&P Indonesie (TEPI) has been the operator of Mahakam Block in East Kalimantan since 1968. In a mature field with aging wells, well integrity becomes a vital aspect to ensure all wells are operated within the design envelope during well's life cycle. This paper discusses development of well integrity management tool in the Mahakam Block to manage more than 2000 wells with various integrity threats. The well integrity management tool developed in TEPI is called SWIM (Smart Well Integrity Module). SWIM acts as a systematic follow-up tools and single database for concerned entities within the Company. On the well integrity management tool logic, NORSOK D-010 barrier concept is applied for a universal approach to all types of well in production regardless of the well completion date as a means to assess the integrity. Three main components will be assessed to determine integrity status of the well, which are: Two barrier envelopes (External and Internal), and Annulus Pressures as its behavior indicates well integrity issue. The software processing logic will then generate the Well Integrity status depends on the status of barrier component or annulus pressure condition. The general well integrity conditions are then represented by assigning color codes. Four color codes, Green/Yellow/Orange/Red, are utilized for visualization purpose of criticality ranking. Green and Yellow are indicating acceptable well integrity status, meanwhile Orange and Red are highlighting one or several integrity issues on the well and prioritization to perform a restoration job. The SWIM as single portal and integrated software provided with accurate data inputis beneficial for Company in terms of criticality rankings and data reliability for monitoring thousands of well integrity condition, allowing proper assessment, fast-follow up, and data gathering to propose suitable intervention or repair if required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.