As atmospheric CO2 levels rise, the CO2 concentration in ocean surface waters increases through a process commonly referred to as ocean acidification. Recently, surprising behavioural modifications has been detected in the early life stages of tropical coral reef fish exposed to ocean acidification-relevant CO2 concentrations, but it has been unclear if this effect could occur in temperate waters. Here we show several severe behavioural disturbances, including effects on boldness, exploratory behaviour, lateralisation, and learning in a temperate fish, the three-spined stickleback (Gasterosteus aculeatus). The behavioural effects were consistent throughout the exposure period and increased in effect size with exposure time. We observed the effects on adult sticklebacks, a species known to be tolerant to other environmental stressors. Our findings suggest that behavioural abnormalities that stem from CO2 exposure are not restricted to sensitive tropical species or early life stages and may therefore affect fish on a global scale. The severity of disturbances and the possibility of a serious behavioural problem for fish across the globe is cause for concern.
Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen β chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1γ, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.