Female gender affords relative protection from cardiovascular disease until the menopause. We report that estrogen acts on estrogen receptor subtype alpha to up-regulate the production of atheroprotective prostacyclin, PGI2, by activation of cyclooxygenase 2 (COX-2). This mechanism restrained both oxidant stress and platelet activation that contribute to atherogenesis in female mice. Deletion of the PGI2 receptor removed the atheroprotective effect of estrogen in ovariectomized female mice. This suggests that chronic treatment of patients with selective inhibitors of COX-2 could undermine protection from cardiovascular disease in premenopausal females.
Signaling through the PGI2 receptor (IP) has been shown to inhibit inflammatory responses in mouse models of respiratory syncytial viral infection and OVA-induced allergic responses. However, little is known about the cell types that mediate the anti-inflammatory function of PGI2. In this study, we determined that PGI2 analogs modulate dendritic cell (DC) cytokine production, maturation, and function. We report that PGI2 analogs (iloprost, cicaprost, treprostinil) differentially modulate the response of murine bone marrow-derived DC (BMDC) to LPS in an IP-dependent manner. The PGI2 analogs decreased BMDC production of proinflammatory cytokines (IL-12, TNF-α, IL-1α, IL-6) and chemokines (MIP-1α, MCP-1) and increased the production of the anti-inflammatory cytokine IL-10 by BMDCs. The modulatory effect was associated with IP-dependent up-regulation of intracellular cAMP and down-regulation of NF-κB activity. Iloprost and cicaprost also suppressed LPS-induced expression of CD86, CD40, and MHC class II molecules by BMDCs and inhibited the ability of BMDCs to stimulate Ag-specific CD4 T cell proliferation and production of IL-5 and IL-13. These findings suggest that PGI2 signaling through the IP may exert anti-inflammatory effects by acting on DC.
Prostacyclin and its mimetics are used therapeutically for the treatment of pulmonary hypertension. These drugs act via cell surface prostacyclin receptors (IP receptors); however, some of them can also activate the nuclear receptor peroxisome proliferator-activated receptor beta (PPARbeta). We examined the possibility that PPARbeta is a therapeutic target for the treatment of pulmonary hypertension. Using the newly approved (for pulmonary hypertension) prostacyclin mimetic treprostinil sodium, reporter gene assays for PPARbeta activation and measurement of lung fibroblast proliferation were analyzed. Treprostinil sodium was found to activate PPARbeta in reporter gene assays and to inhibit proliferation of human lung fibroblasts at concentrations consistent with an effect on PPARs but not on IP receptors. The effects of treprostinil sodium on human lung cell proliferation are mimicked by those of the highly selective PPARbeta ligand GW0742. There are no receptor antagonists for PPARbeta or for IP receptors, but by using lung fibroblasts cultured from mice lacking PPARbeta (PPARbeta-/-) or IP (IP-/-), we demonstrate that the antiproliferative effects of treprostinil sodium are mediated by PPARbeta and not IP in lung fibroblasts. These observations suggest that some of the local, longer-term benefits of treprostinil sodium on reducing the remodeling associated with pulmonary hypertension may be mediated by PPARbeta. This study is the first to identify PPARbeta as a potential therapeutic target for the treatment of pulmonary hypertension, which is important because orally active PPARbeta ligands have been developed for the treatment of dyslipidemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.