Inhibitors selective for prostaglandin G/H synthase-2 (PGHS-2) (known colloquially as COX-2) were designed to minimize gastrointestinal complications of traditional NSAIDs--adverse effects attributed to suppression of COX-1-derived PGE2 and prostacyclin (PGI2). Evidence from 2 randomized controlled-outcome trials (RCTs) of 2 structurally distinct selective inhibitors of COX-2 supports this hypothesis. However, 5 RCTs of 3 structurally distinct inhibitors also indicate that such compounds elevate the risk of myocardial infarction and stroke. The clinical information is biologically plausible, as it is compatible with evidence that inhibition of COX-2-derived PGI2 removes a protective constraint on thrombogenesis, hypertension, and atherogenesis in vivo. However, the concept of simply tipping a "balance" between COX-2-derived PGI2 and COX-1-derived platelet thromboxane is misplaced. Among the questions that remain to be addressed are the following: (a) whether this hazard extends to all or some of the traditional NSAIDs; (b) whether adjuvant therapies, such as low-dose aspirin, will mitigate the hazard and if so, at what cost; (c) whether COX-2 inhibitors result in cardiovascular risk transformation during chronic dosing; and (d) how we might identify individuals most likely to benefit or suffer from such drugs in the future.
Female gender affords relative protection from cardiovascular disease until the menopause. We report that estrogen acts on estrogen receptor subtype alpha to up-regulate the production of atheroprotective prostacyclin, PGI2, by activation of cyclooxygenase 2 (COX-2). This mechanism restrained both oxidant stress and platelet activation that contribute to atherogenesis in female mice. Deletion of the PGI2 receptor removed the atheroprotective effect of estrogen in ovariectomized female mice. This suggests that chronic treatment of patients with selective inhibitors of COX-2 could undermine protection from cardiovascular disease in premenopausal females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.