Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems1–5. Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)—one such nociceptor-produced neuropeptide—directly increases the exhaustion of cytotoxic CD8+ T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8+ T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8+ T cells, Ramp1−/− CD8+ T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8+ T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8+ T cells.
This study investigated the influence of neonatal handling on behavioral and biochemical consequences of chronic mild stress (CMS) in adulthood. Male rat pups were submitted to daily tactile stimulation (TS) or maternal separation (MS), from postnatal day 1 (PND1) to postnatal day 21 (PND21), for 10 min/day. In adulthood, half the number of animals were exposed to CMS for 3 weeks and submitted to behavioral testing, including sucrose preference (SP), elevated plus maze (EPM), and defensive burying tasks (DBTs), followed by biochemical assessments. CMS reduced SP, increased anxiety in EPM and DBT, and increased adrenal weight. In addition, CMS decreased plasma vitamin C (VIT C) levels and increased protein carbonyl (PC) levels, catalase (CAT) activity in hippocampus and cortex, and superoxide dismutase (SOD) levels in cortex. In contrast, both forms of neonatal handling were able to prevent reduction in SP, anxiety behavior in DBT, and CMS-induced adrenal weight increase. Furthermore, they were also able to prevent plasma VIT C reduction, hippocampal PC levels increase, CAT activity increase in hippocampus and cortex, and SOD levels increase in cortex following CMS. Only TS was able to prevent CMS-induced anxiety symptoms in EPM and PC levels in cortex. Taken together, these findings show the protective role of neonatal handling, especially TS, which may enhance ability to cope with stressful situations in adulthood.
Background and Purpose
Amphetamine (AMPH) use disorder is a serious health concern, but, surprisingly, little is known about the vulnerability to the moderate and compulsive use of this psychostimulant and its underlying mechanisms. Previous research showed that inherited serotonin transporter (SERT) down‐regulation increases the motor response to cocaine, as well as moderate (as measured during daily 1‐h self‐administration sessions) and compulsive (as measured during daily 6‐h self‐administration sessions) intake of this psychostimulant. Here, we sought to investigate whether these findings generalize to AMPH and the underlying mechanisms in the nucleus accumbens.
Experimental Approach
In serotonin transporter knockout (SERT−/−) and wild‐type control (SERT+/+) rats, we assessed the locomotor response to acute AMPH and i.v. AMPH self‐administration under short access (ShA: 1‐h daily sessions) and long access (LgA: 6‐h daily sessions) conditions. Twenty‐four hours after AMPH self‐administration, we analysed the expression of glutamate system components in the nucleus accumbens shell and core.
Key Results
We found that SERT−/− animals displayed an increased AMPH‐induced locomotor response and increased AMPH self‐administration under LgA but not ShA conditions. Further, we observed changes in the vesicular and glial glutamate transporters, NMDA and AMPA receptor subunits, and their respective postsynaptic scaffolding proteins as function of SERT genotype and AMPH exposure (baseline, ShA, and LgA), specifically in the nucleus accumbens shell.
Conclusion and Implications
We demonstrate that SERT gene deletion increases the psychomotor and reinforcing effects of AMPH and that the latter is potentially mediated, at least in part, by homeostatic changes in the glutamatergic synapse of the nucleus accumbens shell and/or core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.