This study aimed to determine whether: i) tethe-red-swimming can be used to identify the asymmetry during front crawl swimming style; ii) swimmers that perform unilateral breathing present greater asymmetry in comparison to others that use bilateral breathing; iii) swimmers of best performance present smaller asymmetry than their counterparts; iv) repeated front crawl swimming movements influence body asymmetry. 18 swimmers were assessed for propulsive force parameters (peak force, mean force, impulse and rate of force development) during a maximal front crawl tethered-swimming test lasting 2 min. A factorial analysis showed that propulsive forces decreased at the beginning, intermediate and end of the test (p<0.05), but the asymmetries were not changed at different instants of the test. When breathing preference (uni- or bilateral) was analyzed, asymmetry remained unchanged in all force parameters (p>0.05). When performance was considered (below or above mean group time), a larger asymmetry was found in the sub-group of lower performance in comparison to those of best performance (p<0.05). Therefore, the asymmetries of the propulsive forces can be detected using tethered-swimming. The propulsive forces decreased during the test but asymmetries did not change under testing conditions. Although breathing preference did not influence asymmetry, swimmers with best performance were less asymmetric than their counterparts.
Background: Changes in the proprioceptive system are associated with aging. Proprioception is important to maintaining and/or recovering balance and to reducing the risk of falls. Objective: To compare the performance of young and active elderly adults in three proprioceptive tests. Method: Twenty-one active elderly participants (66.9±5.5 years) and 21 healthy young participants (24.6±3.9 years) were evaluated in the following tests: perception of position of the ankle and hip joints, perceived force level of the ankle joint, and two-point discrimination of the sole of the foot. Results: No differences (p>0.05) were found between groups for the joint position and perceived force level. On the other hand, the elderly participants showed lower sensitivity in the two-point discrimination (higher threshold) when compared to the young participants (p < 0.01). Conclusion: Except for the cutaneous plantar sensitivity, the active elderly participants had maintained proprioception. Their physical activity status may explain similarities between groups for the joint position sense and perceived force level, however it may not be sufficient to prevent sensory degeneration with aging.
The aim of this study was to determine changes in swimming parameters, stroke coordination and symmetry after repeated high intensity swimming efforts in swimmers of different performance levels and para-swimmers. Method: Forty swimmers (20 ablebodied, allocated to higher and lower performance groups-G1 and G2, respectivelyand 20 impaired swimmers -S5 to S10) were recorded by 4 underwater cameras while performing repeated 50m maximum front-crawl swimming with a ten-second interval for each time endured by the swimmer. A cycle stroke was digitized using SIMI Reality Motion Systems in the first and last trials to analyze the kinematic parameters. The comparison among groups and conditions was performed by Mixed ANOVA Models with p<0.05. Results: For all groups, swimming velocity, stroke rate and stroke index showed reduction over time, while stroke length and intracyclic velocity variation did not show significant changes. Conclusions: Training to maintain stroke rate is necessary to support performance since it is the main cause of velocity decrease. Stroke dimensions and individual underwater phases were not sufficient to distinguish groups or conditions.Hand velocity decreased probably due to a decline in energy capacity, propulsive force and passive drag caused by the fatigue process.
Santos, KB, Bento, PCB, Pereira, G, and Rodacki, ALF. The relationship between propulsive force in tethered swimming and 200-m front crawl performance. J Strength Cond Res 30(9): 2500-2507, 2016-The aims of this study were to determine whether propulsive force (peak force, mean force, impulse, and rate of force development) and stroke rate change during 2 minutes of front crawl tethered swimming and to correlate them with the stroke rate and swimming velocity in 200-m front crawl swimming. Twenty-one swimmers (21.6 ± 4.8 years, 1.78 ± 0.06 m, 71.7 ± 8.1 kg), with 200-m front crawl swimming performance equivalent to 78% of the world record (140.4 ± 10.1 seconds), were assessed during 2 minutes of maximal front crawl tethered swimming (propulsive forces and stroke rate) and 200-m front crawl swimming (stroke rate and clean velocity). Propulsive forces decreased between the beginning and the middle instants (∼20%; p ≤ 0.05) but remained stable between the middle and the end instants (∼6%; p > 0.05). The peak force was positively correlated with the clean velocity in the 200-m front crawl swimming (mean r = 0.61; p< 0.02). The stroke rates of the tethered swimming and 200-m front crawl swimming were positively correlated (r = 45; p≤ 0.01) at the middle instant. Therefore, the propulsive force and stroke rate changed throughout the 2 minutes of tethered swimming, and the peak force is the best propulsive force variable tested that correlated with 200-m front crawl swimming performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.