A procedure for monitoring m-DET in human urine and serum is described. m-DET is removed from the urine specimen by partitioning into diethyl ether, but solid-phase extraction is used to remove it from human serum. The urine and serum m-DET values are determined by HPLC with a UV detector. The limit of detection was 0.09 micrograms/mL in urine and 0.09 micrograms/g for serum. The percent of m-DET recovered from human urine spiked between 0.50 and 8.00 micrograms/mL was 90 +/- 5.4%. For human serum spiked between 0.25 and 10.00, the percent recovered was 96 +/- 5.9%. The pooled relative standard deviations (RSD) for spiked matrices were 0.06 for urine and 0.06 for serum.
Glycol ethers are known to produce embryotoxic and teratogenic effects in a variety of animal species. In addition, testicular edema and tubular atrophy have been reported. The health effects of this class of compounds are not known in humans, despite the fact that these solvents are widely used in industry. In order to evaluate potential effects in humans, it is first necessary to estimate exposure in the workplace (environmental monitoring). However, in the case of glycol ethers traditional air monitoring may be ineffective because of the low volatility of these solvents and the possible significant exposure via the skin. Biological monitoring can be used to estimate glycol ether uptake by all routes of exposure. The compounds can be measured in blood or their metabolites quantitated in urine. These procedures are suggested for measuring 2-methoxyethanol, 2-ethoxyethanol and 2-butoxyethanol in blood. In addition, tentative procedures have been developed to measure the oxidized acidic metabolites, methoxyacetic acid and ethoxyacetic acid in urine as possible indices of exposure. All procedures have detection limits of less than 11 parts per million. These procedures are ready to be validated in workers exposed to these solvents.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org..
The National Institute of Environmental Health Sciences (NIEHS) andBrogan & Partners are collaborating with JSTOR to digitize, preserve and extend access to Environmental Health Perspectives.Glycol ethers are known to produce embryotoxic and teratogenic effects in a variety of animal species. In addition, testicular edema and tubular atrophy have been reported. The health effects of this class of compounds are not known in humans, despite the fact that these solvents are widely used in industry.In order to evaluate potential effects in humans, it is first necessary to estimate exposure in the workplace (environmental monitoring). However, in the case of glycol ethers traditional air monitoring may be ineffective because of the low volatility of these solvents and the possible significant exposure via the skin.Biological monitoring can be used to estimate glycol ether uptake by all routes of exposure. The compounds can be measured in blood or their metabolites quantitated in urine. These procedures are suggested for measuring 2-methoxyethanol, 2-ethoxyethanol and 2-butoxyethanol in blood. In addition, tentative procedures have been developed to measure the oxidized acidic metabolites, methoxyacetic acid and ethoxyacetic acid in urine as possible indices of exposure. All procedures have detection limits of less than 11 parts per million. These procedures are ready to be validated in workers exposed to these solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.