We study frequently hypercyclic operators, a natural new concept in hypercyclicity that was recently introduced by F. Bayart and S. Grivaux. We derive a strengthened version of their Frequent Hypercyclicity Criterion, which allows us to obtain examples of frequently hypercyclic operators in a straightforward way. Moreover, Bayart and Grivaux have noted that the frequent hypercyclicity setting differs from general hypercyclicity in that the set of frequently hypercyclic vectors need not be residual. We show here that, under weak assumptions, this set is only of first category. Motivated by this we study the question of whether one may write every vector in the underlying space as the sum of two frequently hypercyclic vectors. This investigation leads us to the introduction of a new notion, that of Runge transitivity.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.