Both G-and V-type nerve agents possess a center of chirality about phosphorus. The S p -enantiomers are generally more potent inhibitors than their R p -counterparts toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). To develop model compounds with defined centers of chirality that mimic the target nerve agent structures, we synthesized both the S p and R p stereoisomers of two series of G-type nerve agent model compounds in enantiomerically enriched form. The two series of model compounds contained identical substituents on the phosphorus as the G-type agents, except that thiomethyl (CH 3 -S-) and thiocholine ((CH 3 ) 3 NCH 2 CH 2 -S-) groups were used to replace the traditional nerve agent leaving groups (i.e., fluoro for GB, GF, and GD; and cyano for GA). Inhibition kinetic studies of the thiomethyl-and thiocholine-substituted series of nerve agent model compounds revealed that the S p enantiomers of both series of compounds showed greater inhibition potency toward AChE and BChE. The level of stereoselectivity, as indicated by the ratio of the bimolecular inhibition rate constants between S p and R p enantiomers, was greatest for the GF model compounds in both series. The thiocholine analogs were much more potent than the corresponding thiomethyl analogs. With the exception of the GA model compounds, both series showed greater potency against AChE than BChE. The stereoselectivity (i.e., S p > R p ), enzyme selectivity, and dynamic range of inhibition potency contributed from these two series of compounds suggest that the combined application of these model compounds will provide useful research tools for understanding interactions of nerve agents with cholinesterase and other enzymes involved in nerve agent and organophosphate pharmacology. The potential of and limitations for using these model compounds in the development of biological therapeutics against nerve agent toxicity are also discussed.
A medium-throughput murine embryonic stem cell (mESC)-based high-content screening of 17,000 small molecules for cardiogenesis led to the identification of a b-annulated 1,4-dihydropyridine (1,4-DHP) that inhibited Transforming Growth Factor β (TGFβ)/Smad signaling by clearing the type II TGFβ receptor from the cell surface. Since this is an unprecedented mechanism of action, we explored the series' structure activity relationship (SAR) based on TGFβ inhibition, and evaluated SAR aspects for cell-surface clearance of TGFβ receptor II (TGFBR2) and for biological activity in mESCs. We determined a pharmacophore and generated 1,4-DHPs with IC50's for TGFβ inhibition in the nanomolar range (e.g., compound 28, 170 nM). Stereochemical consequences of a chiral center at the 4-position was evaluated, revealing 10- to 15-fold more potent TGFβ inhibition for the (+)- than the (−) enantiomer. This stereopreference was not observed for the low level inhibition against Activin A signaling, and was reversed for effects on calcium handling in HL-1 cells.
For 2017, the estimated lifetime risk of developing colorectal cancer was 1 in 22. Even though preventative colonoscopy screening and standard-of-care surgery, radiation, and chemotherapy have decreased the death rate from colorectal cancer, new therapies are needed for metastatic colorectal cancer. Here, we developed a novel small molecule, compound , that inhibited proliferation and viability of human colorectal cancer cells (HCT-116, DLD-1, SW480, and 10.1). Compound inhibited cell migration, invasion, and epithelial-mesenchymal transition processes and potently increased cell apoptosis in human colorectal cancer cells. Compound also modulated mitotic stress signaling, leading to both inhibition of Wnt responsiveness and stabilization and activation of p53 to cause cell-cycle arrest. In mouse xenografts, treatment with compound (20 mg/kg/day, i.p.) induced cell death and inhibited tumor growth more than four-fold compared with vehicle at day 34. Neither acute cytotoxicity nor toxicity in animals (up to 1,000 mg/kg, i.p.) were observed for compound To our knowledge, compound is the first reported potent small molecule that inhibits Wnt/β-catenin signaling, activates p53 signaling regardless of p53 mutation status, and binds microtubules without detectable toxicity. Thus, compound offers a novel mechanism of action and a new strategy to treat colorectal cancer. These findings identify a potent small molecule that may be therapeutically useful for colon cancer that works by inhibiting Wnt/β-catenin signaling, activating p53, and binding microtubules without detectable toxicity. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.