Context. With growing evidence for the existence of very massive stars at subsolar metallicity, there is an increased need for corresponding stellar evolution models. Aims. We present a dense model grid with a tailored input chemical composition appropriate for the Large Magellanic Cloud (LMC). Methods. We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses from 70 to 500 M and with initial surface rotational velocities from 0 to 550 km s −1 , covering the core-hydrogen burning phase of evolution. Results. We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 M , homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above ∼150 M at zero age, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum ZAMS surface temperature of ∼56 000 K, at ∼180 M , and to an evolution of stars in the mass range 50 M . . . 100 M to the regime of luminous blue variables in the Hertzsprung-Russell diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above ∼180 M . Conclusions. The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses.
Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims. The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods. Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results. Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ∼40% and ∼50%, respectively. Similarly, stars with M init > 100 M (mostly H-rich WN stars) also showed high contributions to the global feedback, ∼25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ∼2 and the wind luminosity by a factor ∼9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M yr −1 . This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ∼6 +55 −6 % of the ionising photons escape the region. Conclusions. When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not a...
Context. Rotational mixing in massive main sequence stars is predicted to monotonically increase their surface nitrogen abundance with time. Aims. We use this effect to design a method for constraining the age and the inclination angle of massive main sequence stars, given their observed luminosity, effective temperature, projected rotational velocity and surface nitrogen abundance. Methods. This method relies on stellar evolution models for different metallicities, masses and rotation rates. We use the population synthesis code STARMAKER to show the range of applicability of our method. Results. We apply this method to 79 early B-type main sequence stars near the LMC clusters NGC 2004 and N 11 and the SMC clusters NGC 330 and NGC 346. From all stars within the sample, 17 were found to be suitable for an age analysis. For ten of them, which are rapidly rotating stars without a strong nitrogen enhancement, it has been previously concluded that they did not evolve as rotationally mixed single stars. This is confirmed by our analysis, which flags the age of these objects as highly discrepant with their isochrone ages. For the other seven stars, their nitrogen and isochrone ages are found to agree within error bars, what validates our method. Constraints on the inclination angle have been derived for the other 62 stars,with the implication that the nitrogen abundances of the SMC stars, for which mostly only upper limits are known, fall on average significantly below those limits. Conclusions. Nitrogen chronology is found to be a new useful tool for testing stellar evolution and to constrain fundamental properties of massive main sequence stars. A web version of this tool is provided.
The article contains sections titled: 1. Introduction 2. Properties 3. Occurrence 4. Mining and Processing 5. Chemical Digestion of Ores 6. Strontium Compounds 6.1. Strontium Carbonate 6.2. Strontium Nitrate 6.3. Strontium Chloride 6.4. Strontium Chromate 7. Strontium Metal 8. Toxicology
We extend our previous formulation of low-energy QCD in terms of an effective lagrangean containing operators of dimensionality d ≤ 6 constructed with pseudoscalars and quark fields, describing physics below the scale of chiral symmetry breaking. We include in this paper the vector and axial-vector channels. We follow closely the Extended Chiral Quark Model approach and consistently work in the large-N c and leading log approximation and take into account the constraints from chiral symmetry and chiral symmetry restoration. The optimal fit of all parameters gives further support to a heavy scalar meson with a mass ∼ 1 GeV and a value of the axial pion-quark coupling constant g A 0.55 to 0.66, depending on some assumptions concerning the Weinberg sum rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.