The striking broad emission line spectroscopic appearance of Wolf-Rayet (WR) stars has long defied analysis, due to the extreme physical conditions within their line and continuum forming regions. Recently, model atmosphere studies have advanced sufficiently to enable the determination of stellar temperatures, luminosities, abundances, ionizing fluxes and wind properties. The observed distributions of nitrogen (WN) and carbon (WC) sequence WR stars in the Milky Way and in nearby star forming galaxies are discussed; these imply lower limits to progenitor masses of ∼25, 40, 75 M⊙ for hydrogen-depleted (He-burning) WN, WC, and H-rich (H-burning) WN stars, respectively. WR stars in massive star binaries permit studies of wind-wind interactions and dust formation in WC systems. They also show that WR stars have typical masses of 10-25M⊙, extending up to 80M⊙ for H-rich WN stars. Theoretical and observational evidence that WR winds depend on metallicity is presented, with implications for evolutionary models, ionizing fluxes, and the role of WR stars within the context of core-collapse supernovae and long-duration gamma ray bursts.
Spectroscopic analyses of hydrogen-rich WN 5-6 stars within the young star clusters NGC 3603 and R136 are presented, using archival Hubble Space Telescope and Very Large Telescope spectroscopy, and high spatial resolution near-IR photometry, including Multi-Conjugate Adaptive Optics Demonstrator (MAD) imaging of R136. We derive high stellar temperatures for the WN stars in NGC 3603 (T * ∼ 42 ± 2 kK) and R136 (T * ∼ 53 ± 3 kK) plus clumping-corrected mass-loss rates of 2-5 × 10 −5 M yr −1 which closely agree with theoretical predictions from Vink et al. These stars make a disproportionate contribution to the global ionizing and mechanical wind power budget of their host clusters. Indeed, R136a1 alone supplies ∼7 per cent of the ionizing flux of the entire 30 Doradus region. Comparisons with stellar models calculated for the main-sequence evolution of 85-500 M accounting for rotation suggest ages of ∼1.5 Myr and initial masses in the range 105-170 M for three systems in NGC 3603, plus 165-320 M for four stars in R136. Our high stellar masses are supported by consistent spectroscopic and dynamical mass determinations for the components of NGC 3603A1. We consider the predicted X-ray luminosity of the R136 stars if they were close, colliding wind binaries. R136c is consistent with a colliding wind binary system. However, short period, colliding wind systems are excluded for R136a WN stars if mass ratios are of order unity. Widely separated systems would have been expected to harden owing to early dynamical encounters with other massive stars within such a high-density environment. From simulated star clusters, whose constituents are randomly sampled from the Kroupa initial mass function, both NGC 3603 and R136 are consistent with an tentative upper mass limit of ∼300 M . The Arches cluster is either too old to be used to diagnose the upper mass limit, exhibits a deficiency of very massive stars, or more likely stellar masses have been underestimated -initial masses for the most luminous stars in the Arches cluster approach 200 M according to contemporary stellar and photometric results. The potential for stars greatly exceeding 150 M within metal-poor galaxies suggests that such pair-instability supernovae could occur within the local universe, as has been claimed for SN 2007bi.
Context. The Tarantula Nebula in the Large Magellanic Cloud is our closest view of a starburst region and is the ideal environment to investigate important questions regarding the formation, evolution and final fate of the most massive stars. Aims. We analyze the multiplicity properties of the massive O-type star population observed through multi-epoch spectroscopy in the framework of the VLT-FLAMES Tarantula Survey. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. Methods. We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. By modeling simultaneously the observed binary fraction, the distributions of the amplitudes of the radial velocity variations and the distribution of the time scales of these variations, we constrain the intrinsic current binary fraction and period and mass-ratio distributions. Results. We observe a spectroscopic binary fraction of 0.35±0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20 km s −1 . We compute the intrinsic binary fraction to be 0.51±0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f (log 10 P/d) ∼ (log 10 P/d) π (with log 10 P/d in the range 0.15−3.5) and f (q) ∼ q κ with 0.1 ≤ q = M 2 /M 1 ≤ 1.0. The power-law indexes that best reproduce the observed quantities are π = −0.45 ± 0.30 and κ = −1.0 ± 0.4. The period distribution that we obtain thus favours shorter period systems compared to an Öpik law (π = 0). The mass ratio distribution is slightly skewed towards low mass ratio systems but remains incompatible with a random sampling of a classical mass function (κ = −2.35). The binary fraction seems mostly uniform across the field of view and independent of the spectral types and luminosity classes. The binary fraction in the outer region of the field of view (r > 7.8 , i.e. ≈117 pc) and among the O9.7 I/II objects are however significantly lower than expected from statistical fluctuations. The observed and intrinsic binary fractions are also lower for the faintest objects in our sample (K s > 15.5 mag), which results from observational effects and the fact that our O star sample is not magnitude-limited but is defined by a spectral-type cutoff. We also conclude that magnitude-limited investigations are biased towards larger binary fractions. Conclusions. Using the multiplicity properties of the O stars in the Tarantula region and simple evolutionary considerations, we estimate that over 50% of the current O star population will exchange mass with its companion within a binary system. This shows that binary interaction is greatly affecting the evolution and fate of massive stars, and must be taken into account to correctly interpret unresolved populations of massive stars. Full Tables 1-3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
Abstract. We present new spectroscopic and photometric observations of the young Galactic open cluster Westerlund 1 (Wd 1) that reveal a unique population of massive evolved stars. We identify ∼200 cluster members and present spectroscopic classifications for ∼25% of these. We find that all stars so classified are unambiguously post-Main Sequence objects, consistent with an apparent lack of an identifiable Main Sequence in our photometric data to V ∼ 20. We are able to identify rich populations of Wolf Rayet stars, OB supergiants and short lived transitional objects. Of these, the latter group consists of both hot (Luminous Blue Variable and extreme B supergiant) and cool (Yellow Hypergiant and Red Supergiant) objects -we find that half the known Galactic population of YHGs resides within Wd 1. We obtain a mean V − M V ∼ 25 mag from the cluster Yellow Hypergiants, implying a Main Sequence turnoff at or below M V = −5 (O7 V or later). Based solely on the masses inferred for the 53 spectroscopically classified stars, we determine an absolute minimum mass of ∼1.5 × 10 3 M for Wd 1. However, considering the complete photometrically and spectroscopically selected cluster population and adopting a Kroupa IMF we infer a likely mass for Wd 1 of ∼10 5 M , noting that inevitable source confusion and incompleteness are likely to render this an underestimate. As such, Wd 1 is the most massive compact young cluster yet identified in the Local Group, with a mass exceeding that of Galactic Centre clusters such as the Arches and Quintuplet. Indeed, the luminosity, inferred mass and compact nature of Wd 1 are comparable with those of Super Star Clusters -previously identified only in external galaxies -and is consistent with expectations for a Globular Cluster progenitor.
We present optical studies of the physical and wind properties, plus CNO chemical abundances, of 25 O9.5-B3 Galactic supergiants. We employ non-LTE, line blanketed, extended model atmospheres, which provide a modest downward revision in the effective temperature scale of early B supergiants of up to 1−2 kK relative to previous non-blanketed results. The so-called "bistability jump" at B1 (T eff ∼ 21 kK) from Lamers et al. is rather a more gradual trend (with large scatter) from v ∞ /v esc ∼ 3.4 for B0-0.5 supergiants above 24 kK to v ∞ /v esc ∼ 2.5 for B0.7-1 supergiants with 20 kK ≤ T eff ≤ 24 kK, and v ∞ /v esc ∼ 1.9 for B1.5-3 supergiants below 20 kK. This, in part, explains the break in observed UV spectral characteristics between B0.5 and B0.7 subtypes as discussed by Walborn et al. We compare derived (homogeneous) wind densities with recent results for Magellanic Cloud B supergiants and generally confirm theoretical expectations for stronger winds amongst Galactic supergiants. However, winds are substantially weaker than predictions from current radiatively driven wind theory, especially at mid-B subtypes, a problem which is exacerbated if winds are already clumped in the Hα line forming region. In general, CNO elemental abundances reveal strongly processed material at the surface of Galactic B supergiants, with mean N/C and N/O abundances 10 and 5 times higher than the Solar value, respectively, with HD 2905 (BC0.7 Ia) indicating the lowest degree of processing in our sample, and HD 152236 (B1.5 Ia + ) the highest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.