The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two ∼ 30 M ⊙ black holes at a distance of ∼ 400 Mpc. This event has facilitated qualitatively new tests of gravitational theories, and has also produced exciting information about the astrophysical origin of black hole binaries. In this review we discuss the implications of this event for gravitational physics and astrophysics, as well as the expectations for future detections. In brief: (1) because the spins of the black holes could not be measured accurately and because mergers are not well calculated for modified theories of gravity, the current analysis of GW150914 does not place strong constraints on gravity variants that change only the generation of gravitational waves, but (2) it does strongly constrain alterations of the propagation of gravitational waves and alternatives to black holes. Finally, (3) many astrophysical models for the origin of heavy black hole binaries such as the GW150914 system are in play, but a reasonably robust conclusion that was reached even prior to the detection is that the environment of such systems needs to have a relatively low abundance of elements heavier than helium.