The pharmacokinetic data indicate faster absorption and higher maximal plasma concentration of LA when ultrasound was used as a guidance technique for INB compared with the landmark-based technique. Thus, a reduction of the volume of LA should be considered when using an ultrasound-guided technique for INB.
Amphetamine congeners [e.g., 3,4-methylenedioxymetamphetamine (MDMA), or "ecstasy"] are substrates for monoamine transporters (i.e., the transporters for serotonin, norepinephrine, and dopamine); however, their in vivo-action relies on their ability to promote monoamine efflux. The mechanistic basis for this counter transport remains enigmatic. We tested the hypothesis that outward transport is contingent on the oligomeric nature of neurotransmitter transporters by creating a concatemer of the serotonin transporter and the amphetamineresistant GABA transporter. In cells expressing the concatemer, amphetamine analogs promoted GABA efflux and blunted GABA influx. In contrast, the natural substrates serotonin and GABA only cause mutual inhibition of influx via the other trans
A rapid and low-cost assay for simultaneous vigabatrin (VGA) and gabapentin (GBP) determination is described that can be performed with simple HPLC instrumentation. The method involves derivatization of the primary amine group of VGA and GBP with dansyl chloride followed by isocratic separation (column: microBondapak C-18, 10 microm, 300 x 3.9 mm; mobile phase: 50 mmol/L NaH(2)PO(4) in 40% acetonitrile) at 50 degrees C and fluorometric detection (excitation and emission wavelength: 318 and 510 nm, respectively) of the fluorescent product, which is stable for at least 7 days. Correlation coefficients of the calibration curves are >0.999 with a lower limit of detection of 0.3 microg/mL. Between- and within-run coefficients of variation are below 4.5%, and assay time is 15 minutes. This method may be used for therapeutic drug monitoring in the case of GBP and to control patient compliance in the case of VGA.
Treatment with the neuroleptic agent haloperidol is sometimes associated with serious cardiac arrhythmias. The proarrhythmic potential of haloperidol may be linked to the drug's rate-dependent modulation of cardiac impulse conduction and repolarization. Herein these heart rate-dependent electrophysiologic actions of haloperidol are investigated in vivo. In anesthetized guinea pigs, haloperidol (0.02 mg/kg/min intravenously) produced significant rate-dependent slowing of intraventricular conduction. On abruptly changing the driving cycle length from 500 ms to 300 ms, conduction slowing rapidly reached a new steady state with a rate constant of 0.80 per beat +/- 0.07. The time course of recovery from conduction slowing on interruption of rapid pacing at a cycle length of 250 ms was well described by two time constants, tau(rec1) = 18.9 ms +/- 8.0 and tau(rec2) = 141.8 ms +/- 87.1, suggesting rapid dissociation of the drug from the Na+ channel. During prolonged stimulation, conduction slowing had a biphasic dependence on heart rate: for each 10-bpm increment in heart rate, conduction slowing increased by 7.9% at rates <220 bpm and by 17% at rates >220 bpm. At all tested cycle lengths, haloperidol caused a significant lengthening of Q(T) intervals, which was inversely dependent on heart rate. Numeric analysis suggested that the excessive increase in conduction slowing at rates >220 bpm was due to the drug's Q(T)-prolonging effect, indicating that, at short cycle lengths, the impulses encroached on the refractory period. Thus, in vivo, haloperidol slows intracardiac conduction with rapid on/off kinetics, comparable to the class I antiarrhythmic agent lidocaine. The Q(T) prolongation by haloperidol may lead to an excessive conduction slowing at high heart rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.