In HCCI mode with negative valve overlap, the understanding of the engine behavior in case of misfire and delayed combustion is important to provide a complete control strategy. A hybrid continuous zero dimensional model for gasoline HCCI, based on simplified chemical kinetics and a separate airflow model is introduced. CHEMKIN is used to simulate the chemical kinetics, whereas the airflow and the injection is simulated using MatLab. The model is compared to experimental data. The introduced model is used to analyze the effect of misfire and late combustions on the dynamics of the system. A state transition map is proposed to distinguish between misfire with and without recovery. Control strategies to improve the misfire recovery are suggested.
Abstract:In this paper, an analytical off-line multi-point trajectory generation scheme is presented for differentially flat systems. For control of dynamical systems along a given set of control points, multi-point trajectory generation is required when input and state constraints exist. It is assumed that differential constraints for flat coordinates can be formulated explicitly. The trajectory scheme is based on analytically solving a set of polynomial equations to parameterize n-times continuously differentiable segmented transition polynomials, that approximate time optimal trajectories. The computational effort for determining valid trajectories is low in comparison to numerical optimization. As an example, a multi-point trajectory generation problem for a 3-DOF gantry crane is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.