Environmental pollution by phosphorus from animal waste is a major problem in agriculture because simple-stomached animals, such as swine, poultry, and fish, cannot digest phosphorus (as phytate) present in plant feeds. To alleviate this problem, a phytase from Aspergillus niger PhyA is widely used as a feed additive to hydrolyze phytate-phosphorus. However, it has the lowest relative activity at the pH of the stomach (3.5), where the hydrolysis occurs. Our objective was to shift the pH optima of PhyA to match the stomach condition by substituting amino acids in the substrate-binding site with different charges and polarities. Based on the crystal structure of PhyA, we prepared 21 single or multiple mutants at Q50, K91, K94, E228, D262, K300, and K301 and expressed them in Pichia pastoris yeast. The wild-type (WT) PhyA showed the unique bihump, two-pH-optima profile, whereas 17 mutants lost one pH optimum or shifted the pH optimum from pH 5.5 to the more acidic side. The mutant E228K exhibited the best overall changes, with a shift of pH optimum to 3.8 and 266% greater (P < 0.05) hydrolysis of soy phytate at pH 3.5 than the WT enzyme. The improved efficacy of the enzyme was confirmed in an animal feed trial and was characterized by biochemical analysis of the purified mutant enzymes. In conclusion, it is feasible to improve the function of PhyA phytase under stomach pH conditions by rational protein engineering.
Iron deficiency represents one of the most common global nutritional disorders in humans. Our objective was to determine whether and how supplemental inulin improved utilization of iron intrinsically present in a corn and soybean meal diet by young pigs for hemoglobin repletion. In Expt. 1, 3 groups (n = 8/group) of pigs were fed a corn and soybean meal-based diet (BD, without inorganic iron addition) or BD + 2 or 4% inulin (Synergy 1: a mixture of oligofructose and long-chain inulin HP, Orafti) for 5 wk. Final blood hemoglobin concentrations and the overall hemoglobin repletion efficiency of pigs were positively (r = 0.55 and 0.69, P < 0.01) correlated with dietary inulin concentrations. Compared with pigs fed the BD, those fed 4% inulin demonstrated a 28% improvement (P < 0.01) in hemoglobin repletion efficiency and 15% (P < 0.01) improvement in the final blood hemoglobin concentration. In Expt. 2, 12 weanling pigs (n = 6/group) were fed the BD or the BD + 4% inulin for 6 wk. Pigs fed 4% inulin had higher (P < 0.05) soluble Fe concentrations in the digesta of the proximal, mid, and distal colon, and lower (P < 0.05) sulfide concentrations in the digesta of the distal colon. Supplemental inulin had virtually no effect on pH or phytase activity of digesta from any of the tested segments. In conclusion, supplementing 4% inulin improved utilization of intrinsic iron in the corn and soybean meal diet by young pigs, and this benefit was associated with soluble Fe and sulfide concentrations but not pH or phytase activity in the digesta.
Three experiments were conducted with 96 growing Landrace x Yorkshire x Duroc crossbreds to determine the collective effectiveness of cereal phytase from wheat middlings, microbial phytase, and citric acid in improving phytate-P bioavailability in corn-soy diets. In Exp. 1, 40 gilts (7 wk old) were fed five diets for 8 wk. Diets 1, 2, and 3 were low-P, corn-soybean meal diets (CSB) + 0, .1, or .2% inorganic P (Pi) as calcium phosphate, respectively. Diet 4 was a similar corn-soy diet that included 15% wheat middlings (461 cereal phytase U/kg). Diet 5 was the CSB + microbial phytase (1,200 U/kg; Natuphos, BASF, Mount Olive, NJ). In Exp. 2, 16 barrows (8 wk old) were fed two diets for 6 wk. Diet 1 was the same as Diet 3 of Exp. 1 (.2% Pi). Diet 2 was Diet 4 of Exp. 1 + microbial phytase (300 U/kg). In Exp. 3, 40 barrows and gilts (6 wk old) were fed four diets for 6 wk. Diets 1 and 2 were the same as those in Exp. 2. Diet 3 was Diet 2 of Exp. 2 + 1.5% citric acid. Diet 4 was similar to Diet 3 but contained 10 instead of 15% wheat middlings. In Exp. 1, pigs fed the low-P, CSB (Diet 1) had lower (P < .05) ADG, ADFI, plasma Pi concentration, bone strength, and mobility score than pigs of the other four treatments. Measurements for pigs fed the 15% wheat middlings diet were not significantly different from those of pigs fed the CSB + .1% Pi or microbial phytase. In Exp. 2, ADG (P=.06) during wk 1 to 3 and gain:feed ratio (P < .02) and plasma Pi concentration (P < .005) during all weeks favored pigs fed the CSB + .2% Pi compared with the other diet including 15% wheat middlings. In Exp. 3, identical ADG during all weeks and similar plasma Pi concentrations at wk 4 and 6 were observed between pigs fed the two citric acid diets (Diets 3 and 4) and the CSB + .2% Pi (Diet 1). Pigs fed Diet 4 (10% wheat middlings) had even higher (P < .02) gain:feed ratio during wk 1 to 3 than those fed Diet 1. It seems feasible to completely replace calcium phosphate with 10 to 15% wheat middlings, 300 U microbial phytase/ kg, and 1.5% citric acid in the corn-soy diets for growing pigs.
Dietary phytase supplementation improves bioavailabilities of phytate-bound minerals such as P, Ca, and Zn to pigs, but its effect on Fe utilization is not clear. The efficacy of phytase in releasing phytate-bound Fe and P from soybean meal in vitro and in improving dietary Fe bioavailability for hemoglobin repletion in young, anemic pigs was examined. In Exp. 1, soybean meal was incubated at 37 degrees C for 4 h with either 0, 400, 800, or 1,200 units (U) of phytase/kg, and the released Fe and P concentrations were determined. In Exp. 2, 12 anemic, 21-d-old pigs were fed either a strict vegetarian, high-phytate (1.34%) basal diet alone, or the diet supplemented with 50 mg Fe/kg diet (ferrous sulfate) or phytase at 1,200 U/kg diet (Natuphos, BASF, Mt. Olive, NJ) for 4 wk. In Exp. 3, 20 anemic, 28-d-old pigs were fed either a basal diet with a moderately high phytate concentration (1.18%) and some animal protein or the diet supplemented with 70 mg Fe/kg diet, or with one of two types of phytase (Natuphos or a new phytase developed in our laboratory, 1,200 U/kg diet) for 5 wk. In Exp. 2 and 3, diets supplemented with phytase contained no inorganic P. In Exp. 1, free P concentrations in the supernatant increased in a phytase dose-dependent fashion (P<.05), whereas free Fe concentrations only increased at the dose of 1,200 U/kg (P<.10). In Exp. 2 and 3, dietary phytase increased hemoglobin concentrations and packed cell volumes over the unsupplemented group; these two measures, including growth performance, were not significantly different than those obtained with dietary supplemental Fe. In conclusion, both sources of phytase effectively degraded phytate in corn-soy diets and subsequently released phytate-bound Fe from the diets for hemoglobin repletion in young, anemic pigs.
We have recently expressed a new phytase enzyme in a yeast system. Three experiments with a total of 140 weanling crossbred pigs were conducted to examine the efficacy of this enzyme in improving the bioavailability of phytate-P in corn-soybean meal diets to young pigs. Experiment 1 compared the efficacy of this new phytase with a commercially available phytase (Natuphos, BASF) for 4 wk at an inclusion level of 1,200 U/kg of diet. Experiment 2 compared the responses of pigs to four doses of the new phytase supplementation (300, 600, 900, and 1,200 U/kg of diet) for 4 wk. Experiment 3 compared the efficacy of this new phytase and Natuphos at a marginally optimal dose (700 U/kg of diet) for 5 wk. A group of pigs were fed the P-deficient basal diet as a negative control in Exp. 1, and a group of pigs were fed the basal diet plus .17 or .22% inorganic P as a positive control in all experiments. In Exp. 1, pigs fed the two sources of phytase had similar ADG
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.