Potable water is an essential and major input in processing our food supplies, and the continued growth in food manufacturing is placing increased pressure on this limited resource. Recycling and reuse of factory wastewater can lessen potable water use but requires a detailed understanding of wastewater properties. This study uses solid-phase extraction techniques with gas chromatography-mass spectrometry analysis to investigate trace-level semivolatile organic species in various waste and reference waters associated with the Burra Foods milk-processing plant located in Southeastern Australia. Our focus was on contaminants containing phenolic and heterocyclic nitrogen functional groups, which, because of their toxicity and persistence, may limit options for water recycling and reuse. Effluent from the wastewater treatment plant of the factory showed both the highest soluble carbon burden (47 mg/kg) and concentrations of target compounds. The target species found in these effluents included methyl phenol (13 mg/kg), hydroxy indole (9.8 mg/kg), synthetic tolyltriazoles (5.1 mg/kg) and alkyl phenol ethoxylates (0.2 mg/kg). Given the environmental stability of the tolyltriazoles, they may act as chemical markers where these effluents are used for purposes such as irrigation. Milk evaporator condensate waters, in contrast to the effluent, contained very few target species, with only low levels of pyrrolidine and piperidine derivatives such as ethylglutarimide (450 mug/L) detected. Although there were fewer target microcontaminants overall in the potable and creek reference waters, these samples had characteristic profiles. The potable water analysis revealed hydroxy cineole (2.1 microg/L) and the creek analysis revealed dichlorohydroxyacetophenone (0.3 microg/L), which were not detected in other waters. The compounds found in the wastewaters are likely to have been derived from milk or synthetic chemicals used in factory operations. The presence of nitrogen compounds in all the different milk-processing waters suggest their likely source was milk, probably milk phosphoproteins subjected to thermal, chemical, or microbial degradation. Our benign results for the condensates suggest it may be possible to substitute condensate for potable water with minimal pretreatment, both within the plant and in other applications, such as irrigation of recreation turf.
Wastewater samples were taken from an aerobic bioreactor, operated by a dairy processor in southeastern Australia to reduce nutrient and pollutant loads. Samples were taken over a two-year period, to determine whether trace organic compounds or physicochemical analyses of the wastewater could be used to discriminate the water taken before, during and after processing of the wastewater in the bioreactor. Multivariate analyses of the physicochemical data suggested that nitrate, pH and total dissolved nitrogen best described the infeed wastewater entering the bioreactor, while organic and particulate phosphorus concentrations where predominantly responsible for describing the composition of the content of the bioreactor. Gas chromatography-mass spectrometry data of organic compounds within the wastewater samples were also analysed via multivariate analyses. The analyses found that the compound 4-nitrophenol was associated with ammonia concentrations and mixed liquor wastewater. Therefore, 4-nitrophenol may possibly be used to act as an indicator of anaerobicity in aerobic bioreactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.