Knowledge of the effects of burial depth and burial duration on seed viability and, consequently, seedbank persistence of Palmer amaranth (Amaranthus palmeriS. Watson) and waterhemp [Amaranthus tuberculatus(Moq.) J. D. Sauer] ecotypes can be used for the development of efficient weed management programs. This is of particular interest, given the great fecundity of both species and, consequently, their high seedbank replenishment potential. Seeds of both species collected from five different locations across the United States were investigated in seven states (sites) with different soil and climatic conditions. Seeds were placed at two depths (0 and 15 cm) for 3 yr. Each year, seeds were retrieved, and seed damage (shrunken, malformed, or broken) plus losses (deteriorated and futile germination) and viability were evaluated. Greater seed damage plus loss averaged across seed origin, burial depth, and year was recorded for lots tested at Illinois (51.3% and 51.8%) followed by Tennessee (40.5% and 45.1%) and Missouri (39.2% and 42%) forA. palmeriandA. tuberculatus, respectively. The site differences for seed persistence were probably due to higher volumetric water content at these sites. Rates of seed demise were directly proportional to burial depth (α=0.001), whereas the percentage of viable seeds recovered after 36 mo on the soil surface ranged from 4.1% to 4.3% compared with 5% to 5.3% at the 15-cm depth forA. palmeriandA. tuberculatus, respectively. Seed viability loss was greater in the seeds placed on the soil surface compared with the buried seeds. The greatest influences on seed viability were burial conditions and time and site-specific soil conditions, more so than geographical location. Thus, management of these weed species should focus on reducing seed shattering, enhancing seed removal from the soil surface, or adjusting tillage systems.
A segment of the debate surrounding the commercialization of genetically engineered (GE) crops, such as glyphosate-resistant (GR) crops, focuses on the theory that implementation of these traits is an extension of the intensification of agriculture that will further erode the biodiversity of agricultural landscapes. A large field-scale study was conducted in 2006 in the United States on 156 different field sites with a minimum 3-yr history of GR corn, cotton, or soybean in the cropping system. The impact of cropping system, crop rotation, frequency of using the GR crop trait, and several categorical variables on emerged weed density and diversity was analyzed. Species richness, evenness, Shannon's H′, proportion of forbs, erect growth habit, and C3species diversity were all greater in agricultural sites that lacked crop rotation or were in a continuous GR crop system. Rotating between two GR crops (e.g., corn and soybean) or rotating to a non-GR crop resulted in less weed diversity than a continuous GR crop. The composition of the weed flora was more strongly related to location (geography) than any other parameter. The diversity of weed flora in agricultural sites with a history of GR crop production can be influenced by several factors relating to the specific method in which the GR trait is integrated (cropping system, crop rotation, GR trait rotation), the specific weed species, and the geographical location. The finding that fields with continuous GR crops demonstrated greater weed diversity is contrary to arguments opposing the use of GE crops. These results justify further research to clarify the complexities of crops grown with herbicide-resistance traits, or more broadly, GE crops, to provide a more complete characterization of their culture and local adaptation.
Since weed management is such a critical component of agronomic crop production systems, herbicides are widely used to provide weed control to ensure that yields are maximized. In the last few years, herbicide-resistant (HR) crops, particularly those that are glyphosate-resistant, and more recently, those with dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) resistance are changing the way many growers manage weeds. However, past reliance on glyphosate and mistakes made in stewardship of the glyphosate-resistant cropping system have directly led to the current weed resistance problems that now occur in many agronomic cropping systems, and new technologies must be well-stewarded. New herbicide-resistant trait technologies in soybean, such as dicamba-, 2,4-D-, and isoxaflutole- ((5-cyclopropyl-4-isoxazolyl)[2-(methylsulfonyl)-4-(trifluoromethyl)phenyl]methanone) resistance, are being combined with glyphosate- and glufosinate-resistance traits to manage herbicide-resistant weed populations. In cropping systems with glyphosate-resistant weed species, these new trait options may provide effective weed management tools, although there may be increased risk of off-target movement and susceptible plant damage with the use of some of these technologies. The use of diverse weed management practices to reduce the selection pressure for herbicide-resistant weed evolution is essential to preserve the utility of new traits. The use of herbicides with differing sites of action (SOAs), ideally in combination as mixtures, but also in rotation as part of a weed management program may slow the evolution of resistance in some cases. Increased selection pressure from the effects of some herbicide mixtures may lead to more cases of metabolic herbicide resistance. The most effective long-term approach for weed resistance management is the use of Integrated Weed Management (IWM) which may build the ecological complexity of the cropping system. Given the challenges in management of herbicide-resistant weeds, IWM will likely play a critical role in enhancing future food security for a growing global population.
A segment of the debate surrounding the commercialization and use of glyphosate-resistant (GR) crops focuses on the theory that the implementation of these traits is an extension of the intensification of agriculture that will further erode the biodiversity of agricultural landscapes. A large field-scale study was initiated in 2006 in the United States on 156 different field sites with a minimum 3-yr history of GR-corn, -cotton or -soybean in the cropping system. The impact of cropping system, crop rotation, frequency of using the GR crop trait, and several categorical variables on seedbank weed population density and diversity was analyzed. The parameters of total weed population density of all species in the seedbank, species richness, Shannon's H′ and evenness were not affected by any management treatment. The similarity between the seedbank and aboveground weed community was more strongly related to location than management; previous year's crops and cropping systems were also important while GR trait rotation was not. The composition of the weed flora was more strongly related to location (geography) than any other parameter. The diversity of weed flora in agricultural sites with a history of GR crop production can be influenced by several factors relating to the specific method in which the GR trait is integrated (cropping system, crop rotation, GR trait rotation), the specific weed species, and the geographical location. Continuous GR crop, compared to fields with other cropping systems, only had greater species diversity (species richness) of some life forms, i.e., biennials, winter annuals, and prostrate weeds. Overall diversity was related to geography and not cropping system. These results justify further research to clarify the complexities of crops grown with herbicide-resistance traits to provide a more complete characterization of their culture and local adaptation to the weed seedbank.
Cover crops (CCs) are promoted in agricultural systems because of multi‐functionality claims of CCs increasing soil health, improving nutrient management, and enhancing crop yields. However, the adoption of CCs by farmers remains marginal in the United States because of the direct increase in the cost of planting and potential interference of CCs with grain crop production. The objective of this study was to examine the effects of CC and noCC rotations; corn (Zea mays L.) −cereal rye (Secale cereale L.)−soybean [Glycine max (L.) Merr.]−hairy vetch (Vicia villosa R.) [CcrShv], corn−cereal rye−soybean−oat+radish (Avena sativa L.+Raphanus sativus L.) [CcrSor], and corn−noCC−soybean−noCC [CncSnc] and two tillage systems [no‐tillage (NT) and conventional tillage (CT)] on aboveground plant attributes including dry matter yield, C/N ratio, N uptake, and crop yields. Rotation with hairy vetch as a preceding CC (CcrShv) increased corn grain yield by 14.09 and 12.35% compared to rotations having noCC and oat+radish as preceding CCs in one of the years, respectively. Nitrogen uptake by cereal rye preceding soybean in CcrShv and CcrSor was 16−20 kg ha−1 greater compared to winter weeds in CncSnc. Higher C/N ratio of cereal rye resulted in immobilizing N. Soybean yields for both CC treatments with NT and CT were 0.3−0.6 Mg ha−1 reduced compared to noCC. Our results indicated that hairy vetch was better than oat+radish for supplying additional N to corn thereby improving corn yields. However, cereal rye preceding soybean may negatively impact soybean yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.