No abstract
The practice of producing vegetables on green roofs has been gaining momentum in recent years as a method to facilitate agricultural sustainability in urban areas. Rooftop gardens are becoming an important part of the recent rejuvenation of urban agriculture, and offers alternative spaces to grow vegetable products for urban markets. Green roofs create spaces for the production of vegetable crops, which then generate opportunities for integrating agriculture into urban communities. However, vegetable production activities on rooftops are currently minimal due to multiple challenges that must be overcome before widespread implementation will occur, and these are presented and discussed herein in great detail. Although intensive green roof systems (>15 cm medium depths) are thought to be most suited for vegetable production, the greatest potential for sustained productivity is probably through extensive systems (<15 cm depths) due to weight load restrictions for most buildings. Thus, shallow-rooted vegetables that include important salad greens crops are thought to be the most suited for extensive systems as they can have high productivity with minimal inputs. Research presented herein agree that crops such as lettuce, kale and radish can be produced effectively in an extensive green roof medium with sufficient nutrient and moisture inputs. Other research has indicated that deeper-root crops like tomato can be produced but they will require constant monitoring of fertility and moisture levels. Vegetable production is a definite possibility in urban areas on retrofitted green roofs using minimal growing substrate depths with intensive seasonal maintenance. Rooftop agriculture can improve various ecosystem services, enrich urban biodiversity and reduce food insecurity. Food production provided by green roofs can help support and sustain food for urban communities, as well as provide a unique opportunity to effectively grow food in spaces that are typically unused. The utilization of alternative agricultural production systems, such as green roof technologies, will increase in importance as human populations become more urbanized and urban consumers become more interested in local foods for their families. Although cultivation of food on buildings is a key component to making cities more sustainable and habitable, green roofs are not the total solution to provide food security to cities. They should be viewed more as a supplement to other sources of food production in urban areas.
Since weed management is such a critical component of agronomic crop production systems, herbicides are widely used to provide weed control to ensure that yields are maximized. In the last few years, herbicide-resistant (HR) crops, particularly those that are glyphosate-resistant, and more recently, those with dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) resistance are changing the way many growers manage weeds. However, past reliance on glyphosate and mistakes made in stewardship of the glyphosate-resistant cropping system have directly led to the current weed resistance problems that now occur in many agronomic cropping systems, and new technologies must be well-stewarded. New herbicide-resistant trait technologies in soybean, such as dicamba-, 2,4-D-, and isoxaflutole- ((5-cyclopropyl-4-isoxazolyl)[2-(methylsulfonyl)-4-(trifluoromethyl)phenyl]methanone) resistance, are being combined with glyphosate- and glufosinate-resistance traits to manage herbicide-resistant weed populations. In cropping systems with glyphosate-resistant weed species, these new trait options may provide effective weed management tools, although there may be increased risk of off-target movement and susceptible plant damage with the use of some of these technologies. The use of diverse weed management practices to reduce the selection pressure for herbicide-resistant weed evolution is essential to preserve the utility of new traits. The use of herbicides with differing sites of action (SOAs), ideally in combination as mixtures, but also in rotation as part of a weed management program may slow the evolution of resistance in some cases. Increased selection pressure from the effects of some herbicide mixtures may lead to more cases of metabolic herbicide resistance. The most effective long-term approach for weed resistance management is the use of Integrated Weed Management (IWM) which may build the ecological complexity of the cropping system. Given the challenges in management of herbicide-resistant weeds, IWM will likely play a critical role in enhancing future food security for a growing global population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.