The bloom‐forming freshwater alga Gonyostomum semen is associated with acidic, mesotrophic brown water lakes in boreal regions. However, researchers have been unable to conclusively link G. semen abundance and bloom formation to typical brown water lake traits, that is, high water color and DOC (dissolved organic carbon) concentrations. Iron is a main driver of water color in boreal lakes, and a recent study of lake monitoring data indicated a connection between lakes with high G. semen abundance and iron concentrations >200 µg · L−1. Thus, iron may be the missing link in explaining G. semen abundance and growth dynamics. We experimentally assessed the effects of different iron concentrations above or below 200 µg · L−1 on the growth of G. semen batch monocultures. Iron concentrations <200 µg · L−1 limited G. semen growth, while iron concentrations >200 µg · L−1 did not. Moreover, the iron concentration of the medium required for growth was higher than for other common phytoplankton (Microcystis botrys and Chlamydomonas sp.) included in the experiment. These results indicate that G. semen requires high levels of iron in the lake environment. Consequently, this and previous findings using lake monitoring data support the hypothesis that high concentrations of iron favor the formation of high‐density G. semen blooms in boreal brown water lakes. As lakes get browner in a changing climate, monitoring iron levels could be a potential tool to identify lakes at risk for G. semen blooms, especially among lakes that provide ecosystem services to society.
Summary Planktonic community respiration is an important carbon cycling process, typically quantified by converting measured values of dissolved O2 consumption rates into CO2 production rates assuming a respiratory quotient of 1 (RQ = CO2 per O2 by moles). However, the true variability in planktonic RQs between different aquatic ecosystems is poorly understood. We conducted in situ RQ measurements in a eutrophic lake dominated by algal‐derived substances and found that RQs were significantly below 1. In fact, many RQ values were extremely low (0.2–0.6), below theoretical RQs for oxidation of algal organic matter substrates (0.7–0.8), suggesting that other factors than substrate control need to be considered to understand the RQ. This view was further supported by lack of correlations between RQ and microbial variables known to be strongly substrate dependent, including bacterial growth efficiency and the functional capacity of the bacterioplankton community to degrade different compounds. Based on the measured dynamics in methane and nutrient pools, we discuss that methane oxidation and nitrification likely occurred in the lake, contributing to the unusually low RQs. Our findings demonstrate that planktonic RQs in productive lakes can systematically be below 1, suggesting that CO2 emissions from these lakes may currently be overestimated.
Lakes located in the boreal region are generally supersaturated with carbon dioxide (CO2), which emerges from inflowing inorganic carbon from the surrounding watershed and from mineralization of allochthonous organic carbon. While these CO2 sources gained a lot of attention, processes that reduce the amount of CO2 have been less studied. We therefore examined the CO2 reduction capacity during times of phytoplankton blooms. We investigated partial pressure of CO2 (pCO2) at times of blooms dominated by cyanobacteria (lake Erken, Sweden) or dominated by the nuisance alga Gonyostomum semen (lake Erssjön, Sweden) during two years. Our results showed that pCO2 and phytoplankton densities remained unrelated in the two lakes even during blooms. We suggest that physical factors, such as wind-induced water column mixing and import of inorganic carbon via inflowing waters suppressed the phytoplankton signal on pCO2. These results advance our understanding of carbon cycling in lakes and highlight the importance of detailed lake studies for more precise estimates of local, regional and global carbon budgets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.