Poly(lactic acid) (PLA) composite films reinforced with microcrystalline cellulose (MCC) extracted from pineapple leaf fibers (PALF) were prepared by a solution casting procedure. In an attempt to improve the interaction between PLA and cellulose, two approaches were adopted; first, poly(ethylene glycol) (PEG) was used as a surfactant, and second, the cellulosic fibers were pre-treated using tert-butanol (TBA). Lignocellulosic and cellulosic substrates were characterized using Fourier transform infrared (FTIR), wide-angle X-ray scattering (WAXS), and thermogravimetrical analysis (TGA). MCC from PALF showed good thermal stability, left few residues after decomposing, and exhibited high crystallinity index. Mechanical, thermal and thermomechanical properties of the PLA composites were also evaluated. Multiple PLA endotherms were observed in composites with TBA-treated MCC due to crystal nucleation effects. The ultimate tensile strain values for all composites were lower than that of the pristine PLA. However, 4 wt. % MCC content provided balanced engineering properties in terms of static and dynamic tensile properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.