Water is the major constituent of environmental medium and biological systems. The effects occurring in water as a result of low-intensity electromagnetic irradiation (EMI) in extremely high frequencies are supposed to be the primary mechanism to create conditions for biological responses. The EMI effects on Escherichia coli, after irradiation of their suspension, are most probably water-mediated. Indirect effects of EMI at 51.8, 53, 70.6, and 73 GHz frequencies on bacteria, through water, assay buffer (Tris-phosphate buffer with inorganic salts at low or moderate concentrations), or peptone growth medium were studied. The mediated effects of 70.6 and 73 GHz irradiated water, assay buffer, and growth medium on E. coli growth characteristics were insignificant. But the results were different for 51.8 and 53 GHz. EMI mediated effects on bacterial growth were clearly demonstrated. The effects were more strongly expressed with 53 GHz. Moreover, it was shown that 70.6 and 73 GHz similarly suppressed the cell growth after direct irradiation of E. coli in water or on solid medium. Interestingly, for 51.8 and 53 GHz the bacterial growth decreases after suspension irradiation was less, compared to the direct irradiation of bacteria on solid medium. Especially, it was also more expressed in case of 53 GHz. Also with electron microscopy, EMI-induced bacterial cell sizes and structure different changes were detected. In addition, the distinguished changes in surface tension, oxidation-reduction potential and pH of water, assay buffer, growth medium, and bacterial suspension were determined. They depended on EMI frequency used. The differences could be associated with the partial absorbance of EMI energy by the surrounding medium, which depends on a specific frequency. The results are crucial to understand biophysical mechanisms of EMI effects on bacteria.
The aim of current paper was to investigate the possibility of increasing the toxicity of calcium hypochlorite (Ca(ClO)2) and hydrogen peroxide (H2O2) onEscherichia coli K-12by preliminary enrichment of culture media by carbon dioxide (CO2). For this purpose, the microbes sensitivity to H2O2or/and Ca(ClO)2at normal and CO2-enriched medium was studied by spectrophotometric, radioisotopic, and electronmicroscopic methods. Ten-minute preincubation in CO2-enriched medium enhanced the toxic effect of both H2O2or/and Ca(ClO)2on bacteria as a result of induced growth inhibition, compared to no-CO2enriched group. Additionally, changes in cell morphology and proliferation were observed. It was demonstrated that the preliminary incubation of microbes in CO2-enriched culture media in nonsupercritical concentration elevate the toxic effect of H2O2or/and Ca(ClO)2on microbes. This can serve as a novel, effective, inexpensive, and environmentally friendly approach for water purification from bacteria, further improving the protection of the environment and human health.
AbstractTaking into account the fact that since the 1970s frontal polymerization (FP) reactors in flow have been the subject of our study, the work gives a brief chronology of the development of FP reactors for the synthesis of high molecular polymers, polymeric hydrogels with cross-linked structure, their advantages and drawbacks. The reasons for the impossibility of the practical implementation of tubular FP reactors in flow for the synthesis of polymers are established. The possibility of implementation of tubular FP reactors for the synthesis of polyacrylamide hydrogels (PAH) capable of absorbing and releasing large amount of water is presented. The paper also presents some data on the methods for the synthesis of PAHs with prescribed properties in tubular continuous FP reactors by way of using nano-additives and regulating the kinetics of the synthesis process. As a result, the synthesis process of PAHs with the required properties both in the absorption and release of water, and in the physical-mechanical properties was carried out in frontal tubular-type reactors in flow, and the water absorption kinetic curves and physical-mechanical properties of the obtained hydrogels are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.