Bile acids have received considerable interest in the drug delivery research due to their peculiar physicochemical properties and biocompatibility. The main advantage of bile acids as drug absorption enhancers is their ability to act as both drug solubilizing and permeation-modifying agents. Therefore, bile acids may improve bioavailability of drugs whose absorption-limiting factors include either poor aqueous solubility or low membrane permeability. Besides, bile acids may withstand the gastrointestinal impediments and aid in the transporter-mediated absorption of physically complexed or chemically conjugated drug molecules. These biomolecules may increase the drug bioavailability also at submicellar levels by increasing the solubility and dissolution rate of non-polar drugs or through the partition into the membrane and increase of membrane fluidity and permeability. Most bile acid-induced effects are mediated by the nuclear receptors that activate transcriptional networks, which then affect the expression of a number of target genes, including those for membrane transport proteins, affecting the bioavailability of a number of drugs. Besides micellar solubilization, there are many other types of interactions between bile acids and drug molecules, which can influence the drug transport across the biological membranes. Most common drug-bile salt interaction is ion-pairing and the formed complexes may have either higher or lower polarity compared to the drug molecule itself. Furthermore, the hydroxyl and carboxyl groups of bile acids can be utilized for the covalent conjugation of drugs, which changes their physicochemical and pharmacokinetic properties. Bile acids can be utilized in the formulation of conventional dosage forms, but also of novel micellar, vesicular and polymer-based therapeutic systems. The availability of bile acids, along with their simple derivatization procedures, turn them into attractive building blocks for the design of novel pharmaceutical formulations and systems for the delivery of drugs, biomolecules and vaccines. Although toxic properties of hydrophobic bile acids have been described, their side effects are mostly produced when present in supraphysiological concentrations. Besides, minor structural modifications of natural bile acids may lead to the creation of bile acid derivatives with the reduced toxicity and preserved absorption-enhancing activity.
Diabetes mellitus type 1 (T1D) is a complex disease resulting from the interplay of genetic, epigenetic, and environmental factors. Recent progress in understanding the genetic basis of T1D has resulted in an increased recognition of childhood diabetes heterogeneity. After the initial success of family-based linkage analyses, which uncovered the strong linkage and association between HLA gene variants and T1D, genome-wide association studies performed with high-density single-nucleotide polymorphism genotyping platforms provided evidence for a number of novel loci, although fine mapping and characterization of these new regions remains to be performed. T1D is one of the most heritable common diseases, and among autoimmune diseases it has the largest range of concordance rates in monozygotic twins. This fact, coupled with evidence of various epigenetic modifications of gene expression, provides convincing proof of the complex interplay between genetic and environmental factors. In T1D, epigenetic phenomena, such as DNA methylation, histone modifications, and microRNA dysregulation, have been associated with altered gene expression. Increasing epidemiologic and experimental evidence supports the role of genetic and epigenetic alterations in the etiopathology of diabetes. We discuss recent results related to the role of genetic and epigenetic factors involved in development of T1D. Pediatrics
Tumor progression is strongly associated with the activity of receptor tyrosine kinases (RTKs) and their intracellular signal transduction pathways, which regulate several cell functions including proliferation, apoptosis, motility, adhesion and angiogenesis. Detailed structural and functional studies of RTKs, including the stem cell factor receptor c-KIT, revealed the complexity of these receptor systems and contributed to development of targeted clinical approaches with relevance in both prognosis and therapy. C-KIT signaling network has been the subject of intense research and pharmaceutical strategies to identify novel target-based approaches for cancer treatment. Evidence that c-KIT signaling promotes cell proliferation and survival, along with the frequency in which this pathway is aberrantly activated in cancer, support the current efforts to identify approaches for its efficient inhibition. C-KIT mutations are associatied with several human malignancies, such as gastrointestinal stromal tumors, acute myeloid leukemia, mast cell leukemia, and melanoma. Novel therapies are developed that target some of the identified genetic defects. It is therefore anticipated that newly-identified genetic markers will acquire a predictive value, that is, the ability to predict differential efficacy of a therapy. This review describes the evolving understanding of c-KIT/SCF axis and their downstream signaling in cancer, and the strategies for c-KIT-directed targeted cancer therapy.
Clinical use of doxorubicin continues to be challenged by its undesirable systematic toxicity, caused mainly by oxidative stress. The aim of this study was to investigate the effectiveness of fullerenol C(60)(OH)(24) polyanion nanoparticles, an antioxidant agent, against doxorubicin-induced nephro-, testicular, and pulmonary toxicity. Results obtained in vitro suggest that fullerenol's anti-proliferative property and protective effect against doxorubicin cytotoxicity are mediated by the antioxidative and radical scavenging activity. Male Wistar rats were divided into five treatment groups: the control group (I) received 0.9% NaCl (1 mL/kg, i.p.). Groups II, III, IV, and V received a single dose of doxorubicin (10 mg/kg i.p.), doxorubicin/fullerenol (100 and 50 mg/kg i.p. of fullerenol 30 min prior to 10 mg/kg i.p. of doxorubicin), and fullerenol (100 mg/kg i.p.), respectively. On the 2(nd) and 14(th) days, organ samples were taken for the measurement of lipid peroxidation and activities of superoxide dismutase, catalase, glutathione-peroxidase, -reductase, and -transferase. Doxorubicin induced a significant increase of lipid peroxidation and alterations of antioxidant enzyme activities, while the fullerenol pre-treatment prevented the effects of doxorubicin on investigated parameters. Fullerenol, applied alone, did not alter basal values of the investigated animals. Considering the mechanisms of doxorubicin toxicity, it can be concluded that fullerenol exerts its protective role by acting as a free radical sponge and/or by removing free iron through formation of fullerenol-iron complex. Results of this study support the hypothesis of testicular, pulmo-, and nephroprotective efficacy of fullerenol in preventing oxidative stress induced by doxorubicin.
Apart from well-known functions of bile acids in digestion and solubilization of lipophilic nutrients and drugs in the small intestine, the emerging evidence from the past two decades identified the role of bile acids as signaling, endocrine molecules that regulate the glucose, lipid, and energy metabolism through complex and intertwined pathways that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1). Interactions of bile acids with the gut microbiota that result in the altered composition of circulating and intestinal bile acids pool, gut microbiota composition and modified signaling pathways, are further extending the complexity of biological functions of these steroid derivatives. Thus, bile acids signaling pathways have become attractive targets for the treatment of various metabolic diseases and metabolic syndrome opening the new potential avenue in their treatment. In addition, there is a significant effort to unveil some specific properties of bile acids relevant to their intrinsic potency and selectivity for particular receptors and to design novel modulators of these receptors with improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis of few semi-synthetic bile acids derivatives such as 6α-ethyl-chenodeoxycholic acid (obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary disorders. This review presents an overview of the current knowledge related to bile acids implications in glucose, lipid and energy metabolism, as well as a potential application of bile acids in metabolic syndrome treatment with future perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.