a b s t r a c tFullerene (C 60 ), the third carbon allotrope, is a classical engineered material with the potential application in biomedicine. However, extremely high hydrophobicity of fullerene hampers its direct biomedical evaluation and application. In this work, we investigated the solubilization of fullerene using 9 different solubility enhancers: Tween 20, Tween 60, Tween 80, Triton X-100, PVP, polyoxyethylene (10) lauryl ether, n-dodecyl trimethylammonium chloride, myristyl trimethylammonium bromide and sodium dodecyl sulphate and evaluated its antioxidant activity in biorelevant media. The presence of C 60 entrapped in surfactant micelles was confirmed by UV/VIS spectrometry. The efficacy of each modifier was evaluated by chemometric analysis using experimental data for investigating the relationship between solubilization and particle size distribution. Hierarchical clustering and principal component analysis was applied and showed that non-ionic surfactants provide better solubilization efficacy (>85%). A correlation was established (r = 0.975) between the degree of solubilization and the surfactant structure. This correlation may be used for prediction of C 60 solubilization with non-tested solubility modifiers. Since the main potential biomedical applications of fullerene are based on its free radical quenching ability, we tested the antioxidant potential of fullerene micellar solutions. Lipid peroxidation tests showed that the micellar solutions of fullerene with Triton and polyoxyethylene lauryl ether kept high radical scavenging activity, comparable to that of aqueous suspension of fullerene and BHT. The results of this work provide a platform for further solubilization and testing of pristine fullerene and its hydrophobic derivatives in a biological benign environment.
Clinical use of doxorubicin continues to be challenged by its undesirable systematic toxicity, caused mainly by oxidative stress. The aim of this study was to investigate the effectiveness of fullerenol C(60)(OH)(24) polyanion nanoparticles, an antioxidant agent, against doxorubicin-induced nephro-, testicular, and pulmonary toxicity. Results obtained in vitro suggest that fullerenol's anti-proliferative property and protective effect against doxorubicin cytotoxicity are mediated by the antioxidative and radical scavenging activity. Male Wistar rats were divided into five treatment groups: the control group (I) received 0.9% NaCl (1 mL/kg, i.p.). Groups II, III, IV, and V received a single dose of doxorubicin (10 mg/kg i.p.), doxorubicin/fullerenol (100 and 50 mg/kg i.p. of fullerenol 30 min prior to 10 mg/kg i.p. of doxorubicin), and fullerenol (100 mg/kg i.p.), respectively. On the 2(nd) and 14(th) days, organ samples were taken for the measurement of lipid peroxidation and activities of superoxide dismutase, catalase, glutathione-peroxidase, -reductase, and -transferase. Doxorubicin induced a significant increase of lipid peroxidation and alterations of antioxidant enzyme activities, while the fullerenol pre-treatment prevented the effects of doxorubicin on investigated parameters. Fullerenol, applied alone, did not alter basal values of the investigated animals. Considering the mechanisms of doxorubicin toxicity, it can be concluded that fullerenol exerts its protective role by acting as a free radical sponge and/or by removing free iron through formation of fullerenol-iron complex. Results of this study support the hypothesis of testicular, pulmo-, and nephroprotective efficacy of fullerenol in preventing oxidative stress induced by doxorubicin.
Results obtained in vitro suggested that fullerenol's antiproliferative properties and protective effects against doxorubicin (DOX) cytotoxicity are mediated by antioxidative and hydroxyl radical scavenger activity. The aim of this study was to examine the influence of fullerenol on acute cardiotoxicity after the administration of a single high dose of DOX in vivo. The experiment was performed on male Wistar rats randomly divided into five groups, each containing eight individuals, that were treated as follows: I) 0.9% NaCl, II) 10 mg/kg DOX, III) 50 mg/kg fullerenol 30 min before 10 mg/kg DOX, IV) 100 mg/kg fullerenol 30 min before 10 mg/kg DOX, and V) 100 mg/kg fullerenol. A functional, biochemical, hematological, and pathomorphological examination of the heart as well as an evaluation of oxidative stress parameters was conducted on days 2 and 14 after DOX administration. The function of the heart was investigated by monitoring heart contractility after the adrenaline infusion. Fullerenol, applied alone, did not alter basal values of investigated animals. Both doses of fullerenol, used as a pretreatment, did not alter the basal parameters of the animals. The 100 mg/kg dose of fullerenol showed better protection. Considering the mechanisms of DOX toxicity, fullerenol likely exerts its protective role as a free radical sponge and/or by removing free iron through the formation of a fullerenol-iron complex. Our results suggest that fullerenol might be a potential cardioprotective agent in DOX-treated individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.