Buildings and the construction sector are responsible for 36% of the final energy use as well as 39% of carbon emissions, while the residential sector accounted for 22% of total energy consumption and 17% of carbon emissions. Therefore, housing requires measures which reduce energy consumption and carbon emissions without affecting the living conditions of its occupants. In Mexico, the most commonly used construction systems in mass housing are concrete block walls and concrete slabs, these systems adversely affect comfort conditions and increase energy consumption especially in regions with a hot arid climate, such as Mexicali, in Mexico's northwest region. The objective is to determine the thermal behavior and energy performance of three environmental adaptation strategies applied in the building envelope: thermal insulation, thermal mass, and air cavity walls. A commercial prototype of mass housing was considered as a benchmark case, with concrete block walls and a concrete beam and expanded polystyrene composite roof. The building energy simulation was carried out with the Design Builder ® software for the summer period, where building performance was evaluated with passive design strategies (simulation scenarios include variations in thickness and position of materials that make up the layers in the building components) against a benchmark case (without strategies), the corresponding thermal transmittance values (U-value) were also estimated. The results show differences in surface temperature, cooling demand and operative temperature inside the house; energysaving potential is shown, which contributes to carbon emissions reduction and thus aids in climate change mitigation.
The residential sector is one of the biggest consumers of electric energy, especially in zones with extreme dry-hot climates such as Mexicali. The implementation of NOM-020- ENER-2011 energy efficiency standards for the envelope of the dwelling is essential to provide thermal comfort with a lower energy consumption. The goal of this article is to evaluate the application of energy efficiency standards in three housing models: The first one was a prototype of mass-built housing (commercial model) and the remaining were demonstrative dwelling prototypes built with bioclimatic criteria. The analysis was made with the digital calculation tools provided by the Secretary of Energy and the National Commission for the Efficient Use of Energy. The results showed that for the commercial dwelling to reach the energy efficiency standards, it is required to diminish the overall heat transfer coefficient. Therefore, it was achievable to improve the energetic efficiency by including the bioclimatic housing criteria. Although important efforts have been made to optimize the housing design, they have not been effective enough to improve the energy efficiency of the mass-built housing.
The building and construction industry represents 36% of the world's final energy use and 39% of carbon emissions, while the residential sector is responsible for 22% of total energy consumption and 17% of carbon emissions. Therefore, energy consumption reduction measures are required by this sector, without affecting the living conditions of its occupants. In Baja California, Mexico, the more commonly used construction systems in mass-built housing are concrete block walls and cast in place insulated reinforced concrete roof deck. These systems negatively affect comfort conditions, especially in hot summer periods, and therefore increase energy consumption, particularly in areas with an hot-dry climate, such as Mexicali, Baja California. The objective of this article is to determine the cost-benefit of two passive design strategies applied in the housing envelope, which are thermal insulation and ventilated facade. A commercial model of mass-built housing was taken as a benchmark case. Building energy simulations were carried out with the Design Builder® program, whereby the performance of the house was evaluated without passive design strategies (benchmark case) and with applied strategies, that is, variations in thickness and position of the materials that make up the layers of the walls and roof. Additionally, the net present value (NPV) criterion was used to obtain the costs and benefits of the design strategies. The results show the differences in cooling demand, indoor operative temperature, and the total costs, in Mexican pesos, of the application of the strategies; the results show that there are significant energy savings, which contribute to reducing carbon emissions to the environment and provide economic savings for the user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.