A motion blur identification scheme is proposed for nonlinear uniform motion blurs approximated by piecewise linear models which consist of more than one linear motion component. The proposed scheme includes three modules that are a motion direction estimator, a motion length estimator and a motion combination selector. In order to identify the motion directions, the proposed scheme is based on a trial restoration by using directional forward ramp motion blurs along different directions and an analysis of directional information via frequency domain by using a Radon transform. Autocorrelation functions of image derivatives along several directions are employed for estimation of the motion lengths. A proper motion combination is identified by analyzing local autocorrelation functions of non-flat component of trial restored results. Experimental examples of simulated and real world blurred images are given to demonstrate a promising performance of the proposed scheme.
Dockless electric scooters (e-scooter) have emerged as a green alternative to automobiles and a solution to the first- and last-mile problems. Demand anticipation, or being able to accurately predict spatiotemporal demand of e-scooter usage, is one supply–demand balancing strategy. In this paper, we present a dockless e-scooter demand prediction model based on a fully convolutional network (FCN) coupled with a masking process and a weighted loss function, namely, masked FCN (or MFCN). The MFCN model handles the sparse e-scooter usage data with its masking process and weighted loss function. The model is trained with highly correlated features through our feature selection process. Next-hour and next 24-h prediction schemes have been tested for both pick-up and drop-off demands. Overall, the proposed MFCN outperforms other baseline models including a naïve forecasting, linear regression, and convolutional long short-term memory networks with mean absolute errors of 0.0434 and 0.0464 for the next-hour pick-up and drop-off demand prediction, respectively, and the errors of 0.0491 and 0.0501 for the next 24-h pick-up and drop-off demand prediction, respectively. The developed MFCN expands the collection of deep learning techniques that can be applied in the transportation domain, especially spatiotemporal demand prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.