Understanding maritime traffic patterns is key to Maritime Situational Awareness applications, in particular, to classify and predict activities. Facilitated by the recent build-up of terrestrial networks and satellite constellations of Automatic Identification System (AIS) receivers, ship movement information is becoming increasingly available, both in coastal areas and open waters. The resulting amount of information is increasingly overwhelming to human operators, requiring the aid of automatic processing to synthesize the behaviors of interest in a clear and effective way. Although AIS data are only legally required for larger vessels, their use is growing, and they can be effectively used to infer different levels of contextual information, from the characterization of ports and off-shore platforms to spatial and temporal distributions of routes. An unsupervised and incremental learning approach to the extraction of maritime movement patterns is presented here to convert from raw data to information supporting decisions. This is a basis for automatically detecting anomalies and projecting current trajectories and patterns into the future. The proposed methodology, called TREAD (Traffic Route Extraction and Anomaly Detection) was developed for different levels of intermittency (i.e., sensor coverage and performance), persistence (i.e., time lag between subsequent observations) and data sources (i.e., ground-based and space-based receivers).
The concepts of event and anomaly are important building blocks for developing a situational picture of the observed environment. We here relate these concepts to the JDL fusion model and demonstrate the power of Markov Logic Networks (MLNs) for encoding uncertain knowledge and compute inferences according to observed evidence. MLNs combine the expressive power of first-order logic and the probabilistic uncertainty management of Markov networks. \ud
Within this framework, different types of knowledge (e.g. a priori, contextual) with associated uncertainty can be fused together for situation assessment by expressing unobservable complex events as a logical combination of simpler evidences. \ud
We also develop a mechanism to evaluate the level of completion of complex events and show how, along with event probability, it could provide additional useful information to the operator.\ud
Examples are demonstrated on two maritime scenarios of rules for event and anomaly detection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.