-Both Chlamydophila psittaci and Escherichia coli infections are highly prevalent in Belgian turkeys and therefore they both might contribute to the respiratory disease complex observed in turkeys. C. psittaci can infect turkeys within the first week of age, even in the presence of maternal antibodies. However, the first C. psittaci outbreaks occur mostly at the age of 3 to 6 weeks, the period when also E. coli infections appear on the farms. Therefore, we examined in this study the pathogenicity of an E. coli superinfection on C. psittaci predisposed turkeys. Turkeys were infected with C. psittaci, E. coli or with C. psittaci followed by E. coli. Simulating the impact of an E. coli infection during the acute phase or the latent phase of a C. psittaci infection, turkeys received E. coli at 1 or 5 weeks post C. psittaci infection, respectively. E. coli superinfection during the acute phase of C. psittaci infection increased C. psittaci excretion and stimulated chlamydial replication in the respiratory tract resulting in exacerbated clinical disease. Interestingly, E. coli superinfection during the latent phase of C. psittaci infection induced chlamydial replication, leading to increased C. psittaci-specific antibody titres. In addition, chlamydial predisposition gave higher E. coli excretion compared with turkeys that had only been infected with E. coli. Overall, the present study clearly demonstrates the pathogenic interplay between C. psittaci and E. coli resulting in more severe respiratory disease.
Chlamydophila psittaci / Escherichia coli / turkeys
East Coast fever, an acute lymphoproliferative disease of cattle, is caused by the apicomplexan parasite Theileria parva. Protective immunity is mediated by CD8(+) cytotoxic T lymphocytes directed against schizont-infected cells. The polymorphic immunodominant molecule, although an antibody-inducing surface molecule of the schizont, has been hypothesized to play a role in protective immunity. In order to evaluate the immunogenicity of PIM for inducing CTL, cattle were immunized with PIM in isolation from other T. parva antigens, forcing the presentation of PIM-derived epitopes on the MHC class I molecules. Although parasite-specific cytotoxicity was induced in both vaccinated animals, their immune response was clearly different. One animal generated MHC-restricted parasite-specific CTL against PIM while the other calf exhibited a strong PIM-specific proliferative response but non-MHC-restricted parasite-specific cytotoxicity. Only calf 1 survived a lethal sporozoite challenge. This DNA immunization technique with an antigen in isolation of CTL-immunodominant antigens might open possibilities for directing CTL responses against predefined antigens, such as strain cross-reacting CTL antigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.