The study compares the microstructure of three commercial dental cobalt matrix alloys with related chemical composition declared by the manufacturer. Casts were produced with lost wax method, then melted and casted with centrifugal induction casting machine. The Co-Cr-Mo alloys were casted according to the manufacturers procedure. The samples' chemical composition and phase composition, respectively, using WD-XRF (Wavelength Dispersive X-Ray Fluorescence) and XRD (X-ray Diffarction) methods were analysed. Casts microstructure by mean of LOM (Light Optical Microscopy), SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were investigated. Vickers hardness HV10 was measured. Quantitative microstructure evaluation was performed by means of computer image processing. The results of the chemical composition indicate the high stability of the chemical composition for alloy A. In case of alloys B and C, there was a significant difference in carbon content. Quantitative differences in image of microstructure between of castings A and B, C were noticed. The greater amount of precipitates was recorded for castings with higher carbon content. In all investigated castings, the presence of β matrix solution and M23C6 carbide precipitations was found.
ReseaRch on Resistance to coRRosive weaR of dental cocrMo alloy containing post-pRoduction scRap Badanie odpoRności na zużycie koRozyjne stoMatologicznego stopu cocrMo zawieRającego złoM popRodukcyjny*
The aim of the study was to investigate the influence of kaolinite (KA) and beeswax (BW) addition on the structural and physical properties of thermoplastic starch (TPS) films. The casting method was applied and glycerol was used as a plasticizer. Microstructure analyzes were made by a stereoscopic and a scanning electron microscope. Tensile tests were carried out under static load conditions at three different deformation velocities of V = 0.0001, 0.001, and 0.01 m/s. The studies of surfaces characteristic were performed using water contact angle and water vapor isotherm measurements. The most homogeneous structure of the surface with higher mean values of failure stress and elasticity modulus was observed for thermoplastic starch films with kaolinite addition. The significant reduction in dynamics changes of water contact angle (10 %) of BW films in the time 0-20 s as well as tensile strength decrease was noted (compared to pure TPS films). The research results suggest the validity of using BW and KA to improve the barrier and mechanical properties of TPS films. Further research should focus on to improve the starch-beeswax-kaolinite combination and increase the homogeneity of the structure of films in order to upswing their simultaneous impact on barrier and mechanical properties.
The research subject was the analysis of the microstructure, barrier properties, and mechanical resistance of the psyllium husk (PH)-modified thermoplastic starch films. The tensile tests under various static loading conditions were not performed by researchers for this type of material before and are essential for a more precise assessment of the material’s behavior under the conditions of its subsequent use. The film samples were manufactured by the casting method. PH addition improved starch gelatinization and caused a decrease in failure strain by 86% and an increase in failure stress by 48% compared to pure films. Fourier transform infrared spectroscopy results showed the formation of additional hydrogen bonds between polysaccharides in starch and PH. An increase in the number of hydrophilic groups in the modified films resulted in a faster contact angle decrease (27.4% compared to 12.8% for pure ones within the first 5 s); however, it increased the energy of water binding and surface complexity. The modified films showed the opacity at 600 nm, 43% higher than in the pure starch film, and lower transmittance, suggesting effectively improving barrier properties to UV light, a potent lipid-oxidizing agent in food systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.