Article citation info: (*) Tekst artykułu w polskiej wersji językowej dostępny w elektronicznym wydaniu kwartalnika na stronie www.ein.org.pl Żebrowski r, wAlczAk M, klepkA T, pAsierbiewicz k. effect of the shot peening on surface properties of Ti-6Al-4V alloy produced by means of DMls technology. eksploatacja i Niezawodnosc -Maintenance and reliability 2019; 21 ( 1): 46-53, http://dx.doi.org/10.17531/ ein.2019.1.6. remigiusz Żebrowski Mariusz wAlczAk Tomasz klepkA kamil pAsierbiewicz EffEct of thE shot pEEning on surfacE propErtiEs of ti-6al-4V alloy producEd by mEans of dmls tEchnology WpłyW nagniatania strumiEnioWEgo na WłaściWości EksploatacyjnE stopu ti-6al-4V uzyskanEgo tEchnologią przyrostoWą dmls* The state of the surface layer and biocompatibility are the key parameters contributing to successful implantation of prostheses such as bone implants which are now increasingly often produced by means of DMLS technologies. The analysis of these factors and proper selection of material are required in order to determine the most favourable technological parameters contributing to long term functioning in course of their presence in human body. Therefore, the purpose of the present paper is to investigate the effect of shot peening on the state of the surface layer and corrosion resistance of specimens made of Ti-6Al-4V titanium alloy produced in Direct Metal Laser Sintering (DMLS) process. The specimens have been produced by means of EOSINT M280 system dedicated for laser sintering of metal powders and their surfaces have been subjected to the shot peening process under three different working pressures (0.2, 0.3 and 0.4 MPa) and by means of three different media i.e. CrNi steel shot, crushed nut shells and ceramic balls based on ZrO 2 . It has been found that the process conditions i.e. working pressure in course of shot peening and proper selection of applied shot will make it possible to achieve the properties in modified material sufficient to ensure that assumed functions associated with the improvement of surface layer condition are invariable during required period in specified implant operation conditions. In such case, these factors have been determined in course of microhardness tests, evaluation of surface development degree as well as potentiodynamic tests. The increase of working pressure caused deteriorated corrosion resistance. Simultaneously, it has been found the corrosion resistance was most satisfactory for the surfaces modified by means of: ceramic balls based on ZrO 2 > crushed nut shells > CrNi steel shot correspondingly.
The paper investigates the cavitation erosion (CE) and sliding wear (SW) resistance of cold-sprayed Al/Al2O3 and Cu/Al2O3 composites and studies them in relation to a set of metallic materials such as aluminium alloy (AlCu4Mg1), pure copper (Cu110), brass (CuZn40Pb2) and stainless steel (AISI 304). The coatings were deposited on stainless steel by low-pressure cold spray (LPCS) using Al (40 wt.%) and Cu (50 wt.%) blended with Al2O3 (60 and 50 wt.%, respectively) feedstocks. CE resistance was estimated by the stationary sample method according to the ASTM G32 standard. The SW test was conducted using a ball-on-disc tester with compliance to the ASTM G99 standard. Results obtained for the LPCS coatings show that the Cu/Al2O3 coating exhibits a denser structure but lower adhesion and microhardness than Al/Al2O3. The Al/Al2O3 and Cu/Al2O3 resistance to cavitation is lower than for bulk alloys; however, composites present higher sliding wear resistance to that of AlCu4Mg1, CuZn40Pb2 and stainless steel. The CE wear mechanisms of LPCS composites start at the structural discontinuities and non-uniformities. The cavitation erosion degradation mechanism of Al/Al2O3 relies on chunk material detachment while that of Cu/Al2O3 initiates by alumina removal and continues as layer-like Cu-metallic material removal. CE damage of metal alloys relies on the fatigue-induced removal of deformed material. The SW mechanism of bulk alloys has a dominant adhesive mode. The addition of Al2O3 successfully reduces the material loss of LPCS composites but increases the friction coefficient. Coatings’ wear mechanism has an adhesive-abrasive mode. In both CE and SW environment, the behaviour of the cold-sprayed Cu/Al2O3 composite is much more promising than that of the Al/Al2O3.
This study discusses a quantitative fatigue evaluation of polymer–ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 104 hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.
Components produced by additive manufacturing (AM) via direct metal laser sintering (DMLS) have typical as-fabricated surface defects. As a result, surface properties of AM products should be modified to increase their strength, anti-wear behaviour, and at the same time to ensure their high corrosion resistance. Surface modification via shot peening is considered suitable for additive manufacturing of medical devices made of 17-4PH stainless steel. The objective of this study was to determine the effect of shot peening pressures (0.3 MPa and 0.6 MPa) and three types of blasting media (CrNi steel shot, nutshell granules and ceramic beads) on the tribological characteristics and corrosion resistance of specimens of DMLS 17-4PH stainless steel. Results demonstrated that shot peening caused steel microstructure refinement and—except for the nutshell shot-peened specimens—induced both martensite (α) formation and retained austenite (γ) reduction. 17-4PH specimens peened with steel and ceramic shots showed the highest increase in surface hardening by approx. ~ 119% (from 247 to 542 HV), which significantly improved their wear resistance. The highest mechanical properties (hardness and wear resistance) and corrosion resistance were obtained for the surfaces modified using the following media: ceramic beads > CrNi steel shot > nutshell granules. Adhesive and fatigue wear were two predominant mechanisms of tribological deterioration. Results demonstrated that the application of shot peening using ceramic beads led to grain size refinement from 22.0 to 14.6 nm and surface roughness reduction, which in turn resulted in higher corrosion resistance of the material. DMLS 17-4PH specimens modified by shot peening using ceramic beads and a pressure of 0.6 MPa exhibited the optimum surface morphology, hardness and microstructure, and thus improved wear and corrosion performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.