SUMMARY GpsB regulatory protein and StkP protein kinase have been proposed as molecular switches that balance septal and peripheral (side-wall like) peptidoglycan (PG) synthesis in Streptococcus pneumoniae (pneumococcus); yet, mechanisms of this switching remain unknown. We report that ΔdivIVA mutations are not epistatic to ΔgpsB division-protein mutations in progenitor D39 and related genetic backgrounds; nor is GpsB required for StkP localization or FDAA labeling at septal division rings. However, we confirm that reduction of GpsB amount leads to decreased protein phosphorylation by StkP and report that the essentiality of ΔgpsB mutations is suppressed by inactivation of PhpP protein phosphatase, which concomitantly restores protein phosphorylation levels. ΔgpsB mutations are also suppressed by other classes of mutations, including one that eliminates protein phosphorylation and may alter division. Moreover, ΔgpsB mutations are synthetically lethal with Δpbp1a, but not Δpbp2a or Δpbp1b mutations, suggesting GpsB activation of PBP2a activity. Consistent with this result, co-IP experiments showed that GpsB complexes with EzrA, StkP, PBP2a, PBP2b, and MreC in pneumococcal cells. Furthermore, depletion of GpsB prevents PBP2x migration to septal centers. These results support a model in which GpsB negatively regulates peripheral PG synthesis by PBP2b and positively regulates septal ring closure through its interactions with StkP-PBP2x.
How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division.
The intrinsic resistance of the Mycobacterium tuberculosis complex (MTC) to most antibiotics, including macrolides, is generally attributed to the low permeability of the mycobacterial cell wall. However, nontuberculous mycobacteria (NTM) are much more sensitive to macrolides than members of the MTC. A search for macrolide resistance determinants within the genome of M. tuberculosis revealed the presence of a sequence encoding a putative rRNA methyltransferase. The deduced protein is similar to Erm methyltransferases, which confer macrolide-lincosamide-streptogramin (MLS) resistance by methylation of 23S rRNA, and was named ErmMT. The corresponding gene, ermMT (erm37), is present in all members of the MTC but is absent in NTM species. Part of ermMT is deleted in some vaccine strains of Mycobacterium bovis BCG, such as the Pasteur strain, which lack the RD2 region. The Pasteur strain was susceptible to MLS antibiotics, whereas MTC species harboring the RD2 region were resistant to them. The expression of ermMT in the macrolide-sensitive Mycobacterium smegmatis and BCG Pasteur conferred MLS resistance. The resistance patterns and ribosomal affinity for erythromycin of Mycobacterium host strains expressing ermMT, srmA (monomethyltransferase from Streptomyces ambofaciens), and ermE (dimethyltransferase from Saccharopolyspora erythraea) were compared, and the ones conferred by ErmMT were similar to those conferred by SrmA, corresponding to the MLS type I phenotype. These results suggest that ermMT plays a major role in the intrinsic macrolide resistance of members of the MTC and could be the first example of a gene conferring resistance by target modification in mycobacteria.The Mycobacterium genus comprises more than 70 species, including the major human pathogens responsible for tuberculosis (Mycobacterium tuberculosis, Mycobacterium africanum, and Mycobacterium bovis) and leprosy (Mycobacterium leprae). This genus also includes soil saprophytes and water microorganisms, some of which (e.g., those belonging to the Mycobacterium avium complex) can cause opportunistic infections, especially in immunocompromised patients. Mycobacteria are intrinsically resistant to most commonly used antibiotics and chemotherapeutic agents. Due to its specific structure and composition, the mycobacterial cell wall is an effective permeability barrier, considered to be a major factor in promoting this natural resistance (25). Only a few drugs are active against mycobacteria, and the emergence of multidrug-resistant M. tuberculosis strains is becoming a major problem worldwide (16).Macrolides inhibit protein synthesis in a wide range of bacteria by binding to the large ribosomal subunit (18,23). Like other protein synthesis inhibitors that affect the large subunit, they can also prevent the formation of the 50S particle in growing cells (8). Natural macrolides, such as erythromycin, are not effective against mycobacteria, but semisynthetic derivatives, such as clarithromycin and azithromycin, have stronger antimycobacterial activities a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.