Summary Nest structure is thought to provide benefits that have fitness consequences for several taxa. Traditionally, reduced nest predation has been considered the primary benefit underlying evolution of nest structure, whereas thermal benefits have been considered a secondary or even non‐existent factor. Yet, the relative roles of these factors on nest structures remain largely unexplored. Enclosed nests have a constructed or natural roof connected to sides that allow a restricted opening or tube entrance that provides cover in all directions except the entrance, whereas open nests are cups or platforms that are open above. We show that construction of enclosed nests is more common among songbirds (Passeriformes) in tropical and southern hemisphere regions than in north temperate regions. This geographic pattern may reflect selection from predation risk, under long‐standing assumptions that nest predation rates are higher in southern regions and that enclosed nests reduce predation risk compared with open cup nests. We therefore compared nest predation rates between enclosed vs. open nests in 114 songbird species that do not nest in tree holes among five communities of coexisting birds, and for 205 non‐hole‐nesting species from the literature, across northern temperate, tropical, and southern hemisphere regions. Among coexisting species, enclosed nests had lower nest predation rates than open nests in two south temperate sites, but not in either of two tropical sites or a north temperate site. Nest predation did not differ between nest types at any latitude based on literature data. Among 319 species from both our field studies and the literature, enclosed nests did not show consistent benefits of reduced predation and, in fact, predation was not consistently higher in the tropics, contrary to long‐standing perspectives. Thermal benefits of enclosed nests were indicated based on three indirect results. First, species that built enclosed nests were smaller than species using open nests both among coexisting species and among species from the literature. Smaller species lose heat fastest and thereby may gain important thermal benefits from reduced convective cooling. Second, eggs were warmed by parents for less time in species with enclosed nests, as can be expected if egg cooling rates are slower. Finally, species using enclosed nests exhibited enhanced growth of mass and wings compared with species using open nests, suggesting reduced thermoregulatory costs allowed increased energy for growth. Enclosed nests may therefore provide more consistent thermal than nest predation benefits, counter to long‐standing perspectives. A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12819/suppinfo is available for this article.
Fallen branches, logs, and exposed roots (fallen branches hereafter) commonly form part of the trunk trail system of leaf-cutting ants that inhabit the tropical rain forest. We studied the role of fallen branches on resource discovering and on leaf transport rates in Atta cephalotes. Fallen branches were common components of the A. cephalotes trail system; they were present in all the nests, and in the majority of the trunk trails examined (13/16). A field experiment revealed that, at the beginning of their foraging activity, ants discovered food sources located at the end of fallen branches earlier than those located on the leaf litter. Additionally, laden ants walked faster along a fallen branch than along soil tracks of the trunk trails. This increment in speed was higher in slow-walking ants (e.g., with larger loads) than in fast-walking ants (e.g., with smaller loads). These results suggest that the presence of fallen branches may direct the searching effort of leaf-cutters and increase the foraging speed of laden ants when these structures are part of the trunk trail system. The advantages of using fallen branches as part of a trail system, and their potential consequences in the spatial foraging pattern of leaf-cutting ants, are discussed.Abstract in Spanish is available at
Abstract. We provide details on the breeding biology of the Violet-chested Hummingbird (Sternoclyta cyanopectus) based on 67 nests studied in Yacambú National Park, Venezuela, from 2002 through 2006. Clutch size was two white eggs, usually laid every other day. Fresh egg mass (0.95 ± 0.14 g) was 15% of female mass. Incubation and nestling periods were 20.4 ± 0.3 and 26.0 ± 0.4 days, respectively. Nest attentiveness increased from 60% in early incubation to 68% in late incubation. The female spent 50% of her time brooding young nestlings, but ceased brooding by 13 days of age. Only the female fed the young, with a low rate of nest visitation (3.3 trips per hour) that did not increase with age of the young. Growth rate based on nestling mass (K = 0.28) was slow. Daily predation rates decreased across stages and were 0.064 ± 0.044, 0.033 ± 0.008, and 0.020 ± 0.006 during the egg-laying, incubation, and nestling periods, respectively. Most, but not all, life history traits of the Violet-chested Hummingbird were similar to those reported for other tropical and temperate hummingbirds, providing further evidence that this family shows a relatively narrow range of life history variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.