Statins are considered to be safe, well tolerated and the most efficient drugs for the treatment of hypercholesterolemia, one of the main risk factor for atherosclerosis, and therefore they are frequently prescribed medications. The most severe adverse effect of statins is myotoxicity, in the form of myopathy, myalgia, myositis or rhabdomyolysis. Clinical trials commonly define statin toxicity as myalgia or muscle weakness with creatine kinase (CK) levels greater than 10 times the normal upper limit. Rhabdomyolysis is the most severe adverse effect of statins, which may result in acute renal failure, disseminated intravascular coagulation and death. The exact pathophysiology of statin-induced myopathy is not fully known. Multiple pathophysiological mechanisms may contribute to statin myotoxicity. This review focuses on a number of them. The prevention of statin-related myopathy involves using the lowest statin dose required to achieve therapeutic goals and avoiding polytherapy with drugs known to increase systemic exposure and myopathy risk. Currently, the only effective treatment of statin-induced myopathy is the discontinuation of statin use in patients affected by muscle aches, pains and elevated CK levels.
Background Classic galactosemia is a rare inborn error of carbohydrate metabolism, caused by a severe deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). A galactose-restricted diet has proven to be very effective to treat the neonatal life-threatening manifestations and has been the cornerstone of treatment for this severe disease. However, burdensome complications occur despite a lifelong diet. For rare diseases, a patient disease specific registry is fundamental to monitor the lifespan pathology and to evaluate the safety and efficacy of potential therapies. In 2014, the international Galactosemias Network (GalNet) developed a web-based patient registry for this disease, the GalNet Registry. The aim was to delineate the natural history of classic galactosemia based on a large dataset of patients. Methods Observational data derived from 15 countries and 32 centers including 509 patients were acquired between December 2014 and July 2018. Results Most affected patients experienced neonatal manifestations (79.8%) and despite following a diet developed brain impairments (85.0%), primary ovarian insufficiency (79.7%) and a diminished bone mineral density (26.5%). Newborn screening, age at onset of dietary treatment, strictness of the galactose-restricted diet, p.Gln188Arg mutation and GALT enzyme activity influenced the clinical picture. Detection by newborn screening and commencement of diet in the first week of life were associated with a more favorable outcome. A homozygous p.Gln188Arg mutation, GALT enzyme activity of ≤ 1% and strict galactose restriction were associated with a less favorable outcome. Conclusion This study describes the natural history of classic galactosemia based on the hitherto largest data set. Electronic supplementary material The online version of this article (10.1186/s13023-019-1047-z) contains supplementary material, which is available to authorized users.
BackgroundClinician-assigned New York Heart Association (NYHA) class is an established predictor of outcomes in heart failure. This study aims to test whether patients' self-assessment of functional status by NYHA class predicts hospital admissions, quality of life, and mortality.Methods and ResultsThis was an observational study within a randomized controlled trial. A total of 293 adult patients diagnosed with heart failure were recruited after an emergency admission at 3 acute hospitals in Norfolk, UK. Outcome measures included number of emergency admissions over 6 months, self-assessed quality of life measured with the Minnesota Living with Heart Failure questionnaire (MLHFQ) and EQ-5D at 6 months, and deaths up to 20 months' follow-up. Patients were grouped into 3 NYHA groups (I/II, III, and IV) based on patients' self-assigned NYHA class (SA-NYHA). A Poisson model indicated an increased readmission rate associated with higher SA-NYHA class (adjusted rate ratio 1.21; 95% CI 1.04–1.41; P = .02). Higher SA-NYHA class at baseline predicted worse quality of life at 6 months' follow-up (P = .002 for MLHFQ; P = .047 for EQ-5D), and was associated with higher mortality rate (adjusted hazard ratio 1.84; 95% CI 1.10–3.06; P = .02).ConclusionsSA-NYHA class is predictive of hospitalization, quality of life, and mortality among patients with heart failure.
Mitochondrial dysfunction and oxidative stress have been implicated in the pathogenesis of a number of diseases and conditions. Oxidative stress occurs once the antioxidant defenses of the body become overwhelmed and are no longer able to detoxify reactive oxygen species (ROS). The ROS can then go unchallenged and are able to cause oxidative damage to cellular lipids, DNA and proteins, which will eventually result in cellular and organ dysfunction. Although not always the primary cause of disease, mitochondrial dysfunction as a secondary consequence disease of pathophysiology can result in increased ROS generation together with an impairment in cellular energy status. Mitochondrial dysfunction may result from either free radical-induced oxidative damage or direct impairment by the toxic metabolites which accumulate in certain metabolic diseases. In view of the importance of cellular antioxidant status, a number of therapeutic strategies have been employed in disorders associated with oxidative stress with a view to neutralising the ROS and reactive nitrogen species implicated in disease pathophysiology. Although successful in some cases, these adjunct therapies have yet to be incorporated into the clinical management of patients. The purpose of this review is to highlight the emerging evidence of oxidative stress, secondary mitochondrial dysfunction and antioxidant treatment efficacy in metabolic and non-metabolic diseases in which there is a current interest in these parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.