A very simple, environmentally friendly, one-step oxidative polymerization route to fabricate polypyrrole (Ppy) nanoparticles of fixed size and morphology was developed and investigated. The herein proposed method is based on the application of sodium dodecyl sulfate and hydrogen peroxide, both easily degradable and cheap materials. The polymerization reaction is performed on 24 h time scale under standard conditions. We monitored a polaronic peak at 465 nm and estimated nanoparticle concentration during various stages of the reaction. Using this data we proposed a mechanism for Ppy nanoparticle formation in accordance with earlier emulsion polymerization mechanisms. Rates of various steps in the polymerization mechanism were accounted for and the resulting particles identified using atomic force microscopy. Application of Ppy nanoparticles prepared by the route presented here seems very promising for biomedical applications where biocompatibility is paramount. In addition, this kind of synthesis could be suitable for the development of solar cells, where very pure and low-cost conducting polymers are required.
SignificanceBlastocyst hatching is crucial for implantation of mammalian embryos and a common failure point during in vitro fertilization (IVF). We have little knowledge of the mechanical basis whereby an embryo hatches out of the zona pellucida. We have developed a technique to measure blastocyst pressure, allowing us to quantify physiological parameters and providing additional measures of efficiency in IVF optimization. We find that mechanical stretching of the zona by the blastocyst is essential for efficient hatching. Cryopreservation and thawing of embryos is common during IVF. Our technique reveals significant differences in microphysiology between fresh and thawed embryos. Our experimental and associated mathematical techniques are also applicable to other biological systems involving cavity formation, providing an approach for measuring forces in diverse contexts.
Elongation of the body axis is a key aspect of body plan development. Bipotential neuromesoderm progenitors (NMPs) ensure axial growth of embryos by contributing both to the spinal cord and mesoderm. The current model for the mechanism controlling NMP deployment invokes Tbx6, a T-box factor, to drive mesoderm differentiation of NMPs. Here, we identify a new population of Tbx6 cells in a subdomain of the NMP niche in mouse embryos. Based on co-expression of a progenitor marker, Sox2, we identify this population as representing a transient cell state in the mesoderm-fated NMP lineage. Genetic lineage tracing confirms the presence of the NMP cell state. Furthermore, we report a novel aspect of the documented mutant phenotype, namely an increase from two to four ectopic neural tubes, corresponding to the switch in NMP niche, thus highlighting the importance of function in NMP fate decision. This study emphasizes the function of Tbx6 as a bistable switch that turns mesoderm fate 'on' and progenitor state 'off', and thus has implications for the molecular mechanism driving NMP fate choice.
Precise patterning within the 3-dimensional context of tissues, organs and embryos implies that cells can sense their relative position. During preimplantation development, outside and inside cells rely on apicobasal polarity and the Hippo pathway to choose their fate. Despite recent findings suggesting that mechanosensing may be central to this process, the relationship between blastomere geometry (i.e. shape and position) and the Hippo pathway effector YAP remains unknown. We used a highly quantitative approach to analyse information on the geometry and YAP localisation of individual blastomeres of mouse and human embryos. We identify proportion of exposed cell surface area as most closely correlating with nuclear localisation of YAP. To test this relationship, we developed several hydrogel-based approaches to alter blastomere geometry in cultured embryos. Unbiased clustering analyses of blastomeres from such embryos reveal that this relationship emerges during compaction. Our results therefore pinpoint when during early embryogenesis cells acquire the ability to sense changes in geometry and provide a new framework for how cells might integrate signals from different membrane domains to assess their relative position within the embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.