Array-based sensors provide an architecture for multianalyte sensing. In this paper, we report a new approach for array fabrication. Sensors are made by immobilizing different reactive chemistries on the surfaces of microspheres. Sensor arrays are prepared by randomly distributing a mixture of microsphere sensors on an optical substrate containing thousands of micrometer-scale wells. The sensors occupy a different location from array to array; thus the identity of each sensor is ascertained and registered on the detector using encoding schemes, rather than by a predetermined location in the array. The approach thereby shifts the demand from fabrication to signal processing. The availability of commercial image analysis software makes such a shift both cost-effective and time efficient.
We report a new approach to designing an artificial nose based on high-density optical arrays that directly incorporate a number of structural and operational features of the olfactory system. The arrays are comprised of thousands of microsphere (bead) sensors, each belonging to a discrete class, randomly dispersed across the face of an etched optical imaging fiber. Beads are recognized and classified after array assembly by their unique, "self-encoded" response pattern to a selected vapor pulse. The high degree of redundancy built into the array parallels that found in nature and affords new opportunities for chemical-sensor signal amplification. Since each bead is independently addressable through its own light channel, it is possible to combine responses from same-type beads randomly distributed throughout the array in a manner reminiscent of the sensory-neuron convergence observed in the mammalian olfactory system. Signal-to-noise improvements of approximately n1/2 have been achieved using this method.
Despite many innovations and developments in the field of fiber-optic chemical sensors, optical fibers have not been employed to both view a sample and concurrently detect an analyte of interest. While chemical sensors employing a single optical fiber or a noncoherent fiberoptic bundle have been applied to a wide variety of analytical determinations, they cannot be used for imaging. Similarly, coherent imaging fibers have been employed only for their originally intended purpose, image transmission. We herein report a new technique for viewing a sample and measuring surface chemical concentrations that employs a coherent imaging fiber. The method is based on the deposition of a thin, analyte-sensitive polymer layer on the distal surface of a 350-microns-diameter imaging fiber. We present results from a pH sensor array and an acetylcholine biosensor array, each of which contains approximately 6000 optical sensors. The acetylcholine biosensor has a detection limit of 35 microM and a fast (< 1 s) response time. In association with an epifluorescence microscope and a charge-coupled device, these modified imaging fibers can display visual information of a remote sample with 4-microns spatial resolution, allowing for alternating acquisition of both chemical analysis and visual histology.
We demonstrate a far-field-viewing GRINscope sensor for making analytical measurements in remote locations. The GRINscope was fabricated by permanently affixing a micro-Gradient index (GRIN) lens on the distal face of a 350-micron-diameter optical imaging fiber. The GRINscope can obtain both chemical and visual information. In one application, a thin, pH-sensitive polymer layer was immobilized on the distal end of the GRINscope. The ability of the GRINscope to visually image its far-field surroundings and concurrently detect pH changes in a flowing stream was demonstrated. In a different application, the GRINscope was used to image pH- and O2-sensitive particles on a remote substrate and simultaneously measure their fluorescence intensity in response to pH or pO2 changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.