It is shown that backscatter Kikuchi diffraction in the scanning electron microscope can be used for the determination of elastic strain with μm resolution. From the shift of Kikuchi bands in backscatter Kikuchi diffraction patterns of epitaxial Si1−xGex layers on Si(100) the perpendicular elastic strain was determined to be 2.5% for x=0.34 and at 1.0% for x=0.16 with an accuracy of about 0.1%. The values found on a μm scale were in good agreement with high-resolution x-ray diffraction measurements averaging over mm distances.
Silicon oxynitride films with varying oxygen/nitrogen ratio were grown from SiH4, N2O, and NH3 by means of a plasma-enchanced chemical vapor deposition process. The elemental composition of the deposited films was measured by a variety of high-energy ion beam techniques. To determine the chemical structure we used Fourier transform infrared absorption spectroscopy and electron-spin resonance. Ellipsometric data and values for mechanical stress are also reported. We show that the entire range of compositions from silicon oxide to silicon nitride can be covered by applying two different processes and by adjusting the N2O/NH3 gas flow ratio of the respective processes. It is suggested that the N2O/SiH4 gas flow ratio is the major deposition characterization parameter, which also controls the chemical structure as far as the hydrogen bonding configuration is concerned. We found that the films contain significant amounts of excess silicon and that the mechanical stress in the oxynitrides is lower than in plasma nitride. The electron-spin density is low (∼1017/cm3) in all samples.
The anneal behavior of plasma-enhanced chemical vapor deposited silicon oxynitride films has been studied using Fourier transform infrared absorption spectroscopy, nuclear reaction analysis, and electron-spin resonance. The anneal temperature range was 500–1000 °C. It is observed that the oxynitrides which contain only N–H bonds are thermally stable in the temperature range under study. The layers which also contain Si–H bonds are considerably less thermally stable. Abundant hydrogen effusion from these layers is observed at temperatures as low as 600 °C, accompanied by cracking and shrinkage of the films. It is suggested that the coexistence of both Si–H and N–H bonds offers the possibility for cross linking and that consequently the decomposition temperature of both types of bonds is lowered. Evidence for the occurrence of cross linking is found in the infrared difference spectra. Consistently, the silicon unpaired electron density does not increase upon annealing. The Si–H and N–H bands effectively shift towards higher wave numbers upon annealing at higher temperatures. This is ascribed to the inhomogeneity in bond strength, which in turn is related to a variation in electronegativity of the surrounding groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.