Abstract. We measured capacitance changes in cell attached patches of human neutrophils using a high frequency lock-in method. With this technique the noise level is reduced to 0.025 tF such that capacitance steps of 0.1 fF are clearly detected corresponding to exo-and endocytosis of single 60 nm vesicles. It is thus possible to detect almost all known exocytotic and endocytotic processes including exocytosis of small neurotransmitter containing vesicles in most cell types as well as endocytosis of coated and uncoated pits. In neutrophils we demonstrate a stepwise capacitance decrease generated by 60-165 nm vesicles as expected for endocytosis of coated and non-coated pits. Following ionomycin stimulation a stepwise capacitance increase is observed consisting of 0.1-5 fF steps corresponding to the different granule types of human neutrophils from secretory vesicles to azurophil granules. The opening of individual fusion pores is resolved during exocytosis of 200 nm vesicles. The initial conductance has a mean value of 150 pS and can be as low as 35 pS which is similar to the conductance of many ion channels suggesting that the initial fusion pore is formed by a protein complex. XOCYTOSIS and endocytosis is mediated by vesiclesand granules of variable size. Fusion and fission of single vesicles can be measured as stepwise changes in plasma membrane capacitance (24) and the initial opening of the fusion pore between the granular lumen and the extracellular space has been characterized by electrophysiological measurements (7,9,20,33). However, these studies were limited to giant granules with a diameter >1 #m and the interpretations of the results remain controversial (1, 21). It has been proposed that the initial fusion pore is formed by a protein channel, similar to a gap junction which connects the cytoplasmatic space of two adjacent cells (1, 2). Alternatively it was proposed that the fusion pore is completely lipidic with pore opening induced by tension generated by a protein scaffold (21-23). These two models lead to different expectations for the initial electrical pore conductance. Whereas ion channels formed by trans-membrane proteins usually have conductances below 400 pS (13), the conductances of lipidic pores are generally larger than 1 nS (26, 34). Measurements of pore conductance thus provide a tool to distinguish between these two possibilities. Previous experiments on pore conductances led to mean values of 250-350 pS (7, 33) but these states were very short-lived and could possibly reflect an unstable state formed when the lipid pore opens. The demonstration of metastable fusion pores with conductances below 200 pS would be strong evidence for a fusion pore similar to a trans-membrane ion channel.Most exocytotic and endocytotic granules and vesicles have a diameter between 60 and 300 nm corresponding to capacitance steps of 0.1-2.3 fF. These cannot be resolved in whole cell recordings and nothing is known about the properties of the fusion pore which forms during exocytosis of such vesicles. The...
The traditional classification of neutrophil granules as peroxidase‐positive (azurophil, or primary) and peroxidase‐negative (specific or secondary) has proven to be too simple to explain the differential exocytosis of granule proteins and incorporation of granule membrane into the plasma membrane which is an important aspect of neutrophil activation. Combined subcellular fractionation and immunoelectron microscopy has revealed heterogeneity among both peroxidase‐positive and peroxidase‐negative granules with regard to their content, mobilization and time of formation. Peroxidase‐negative granules may be classified according to their content of lactoferrin and gelatinase: 15% of peroxidase‐negative granules contain lactoferrin, but no gelatinase. 60% contain both lactoferrin and gelatinase. The term specific or secondary granule should be reserved for these two subsets. In addition, 25% of peroxidase‐negative granules contain gelatinase but no lactoferrin. These should be termed gelatinase granules or tertiary granules. Gelatinase granules are formed later than specific granules and mobilized more readily. In addition, a distinct, highly mobilizable intracellular compartment, the secretory vesicle, has now been recognized as an important store of surface membrane‐bound receptors. This compartment is formed in band cells and segmented cells by endocytosis. This heterogeneity among the neutrophil granules is of functional significance, and may also be reflected in the dysmaturation which is an important feature of myeloproliferative and myelodysplastic disorders.
We recently confirmed the existence of gelatinase granules as a subpopulation of peroxidase-negative granules by double-labeling immunogold electron microscopy on intact cells and by subcellular fractionation. Further characterization of gelatinase granules has been hampered by poor separation of specific and gelatinase granules on both two-layer Percoll gradients and sucrose gradients. We have developed a three-layer Percoll density gradient that allows separation of the different granules and vesicles from human neutrophils; in particular, it allows separation of specific and gelatinase granules. This allows us to characterize these two granule populations with regard to their content of membrane proteins, which become incorporated into the plasma membrane during exocytosis. We found that gelatinase granules, defined as peroxidase-negative granules containing gelatinase but lacking lactoferrin, contain 50% of total cell gelatinase, with the remaining residing in specific granules. Furthermore, we found that 20% to 25% of both the adhesion protein Mac-1 and the NADPH-oxidase component cytochrome b558 is localized in gelatinase granules. Although no qualitative difference was observed between specific granules and gelatinase granules with respect to cytochrome b558 and Mac-1, stimulation of the neutrophil with FMLP resulted in a selective mobilization of the least dense peroxidase-negative granules, ie, gelatinase granules, which, in concert with secretory vesicles, furnish the plasma membrane with Mac-1 and cytochrome b558. This shows that gelatinase granules are functionally important relative to specific granules in mediating early inflammatory responses.
We recently confirmed the existence of gelatinase granules as a subpopulation of peroxidase-negative granules by double-labeling immunogold electron microscopy on intact cells and by subcellular fractionation. Further characterization of gelatinase granules has been hampered by poor separation of specific and gelatinase granules on both two-layer Percoll gradients and sucrose gradients. We have developed a three-layer Percoll density gradient that allows separation of the different granules and vesicles from human neutrophils; in particular, it allows separation of specific and gelatinase granules. This allows us to characterize these two granule populations with regard to their content of membrane proteins, which become incorporated into the plasma membrane during exocytosis. We found that gelatinase granules, defined as peroxidase-negative granules containing gelatinase but lacking lactoferrin, contain 50% of total cell gelatinase, with the remaining residing in specific granules. Furthermore, we found that 20% to 25% of both the adhesion protein Mac-1 and the NADPH-oxidase component cytochrome b558 is localized in gelatinase granules. Although no qualitative difference was observed between specific granules and gelatinase granules with respect to cytochrome b558 and Mac-1, stimulation of the neutrophil with FMLP resulted in a selective mobilization of the least dense peroxidase-negative granules, ie, gelatinase granules, which, in concert with secretory vesicles, furnish the plasma membrane with Mac-1 and cytochrome b558. This shows that gelatinase granules are functionally important relative to specific granules in mediating early inflammatory responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.