Herein we report a low cost, sensitive, supercapacitor-powered electrochemiluminescent (ECL) protein immunoarray fabricated by an inexpensive 3-dimensional (3D) printer. The immunosensor detects three cancer biomarker proteins in serum within 35 min. The 3D-printed device employs hand screen printed carbon sensors with gravity flow for sample/reagent delivery and washing. Prostate cancer biomarker proteins, prostate specific antigen (PSA), prostate specific membrane antigen (PSMA) and platelet factor-4 (PF-4) in serum were captured on the antibody-coated carbon sensors followed by delivery of detection-antibody-coated Ru(bpy)32+ (RuBPY)-doped silica nanoparticles in a sandwich immunoassay. ECL light was initiated from RuBPY in the silica nanoparticles by electrochemical oxidation with tripropylamine (TPrA) co-reactant using supercapacitor power and ECL was captured with a CCD camera. The supercapacitor was rapidly photo-recharged between assays using an inexpensive solar cell. Detection limits were 300–500 fg mL−1 for the 3 proteins in undiluted calf serum. Assays of 6 prostate cancer patient serum samples gave good correlation with conventional single protein ELISAs. This technology could provide sensitive onsite cancer diagnostic tests in resource-limited settings with the need for only moderate-level training.
A consumer-grade fused filament fabrication (FFF) 3D printer was used to construct fluidic devices for nanoparticle preparation and electrochemical sensing. Devices were printed using poly(ethylene terephthalate) and featured threaded ports to connect polyetheretherketone (PEEK) tubing via printed fittings prepared from acrylonitrile butadiene styrene (ABS). These devices included channels designed to have 800 × 800 µm2 square cross sections and were semitransparent to allow visualization of the solution-filled channels. A 3D-printed device with a Y-shaped mixing channel was used to prepare Prussian blue nanoparticles (PBNPs) under flow rates of 100 to 2000 µL min−1. PBNPs were then attached to gold electrodes for hydrogen peroxide sensing. 3D-printed devices used for electrochemical measurements featured threaded access ports into which a fitting equipped with reference, counter, and PBNP-modified working electrodes could be inserted. PBNP-modified electrodes enabled amperometric detection of H2O2 in the 3D-printed channel by flow-injection analysis, exhibiting a detection limit of 100 nM and linear response up to 20 µM. These experiments show that a consumer-grade FFF printer can be used to fabricate low-cost fluidic devices for applications similar to those that have been reported with more expensive 3D-printing methods.
We describe an electrochemiluminescence (ECL) immunoarray incorporated into a prototype microfluidic device for highly sensitive protein detection, and apply this system to accurate, sensitive measurements of prostate specific antigen (PSA) and interleukin-6 (IL-6) in serum. The microfluidic system employed three molded polydimethylsiloxane (PDMS) channels on a conductive pyrolytic graphite chip (PG) (2.5 × 2.5 cm) inserted into a machined chamber and interfaced with a pump, switching valve and sample injector. Each of the three PDMS channels encompasses three 3 μL analytical wells. Capture-antibody-decorated single-wall carbon nanotube (SWCNT) forests are fabricated in the bottom of the wells. The antigen is captured by these antibodies on the well bottoms. Then a RuBPY-silica-secondary antibody (Ab2) label is injected to bind to antigen on the array, followed by injection of sacrificial reductant tripropylamine (TPrA) to produce ECL. For detection, the chip is placed into an open-top ECL measuring cell, and the channels are in contact with electrolyte in the chamber. Potential applied at 0.95 V vs. SCE oxidizes TPrA to produce ECL by redox cycling the RuBPY species in the particles, and ECL light is measured by a CCD camera. This approach achieved ultralow detection limits (DL) of 100 fg mL-1 for PSA (9 zeptomol) and 10 fg mL-1 (1 zeptomol) for IL-6 in calf serum, a 10-25 fold improvement of a similar non-microfluidic array. PSA and IL-6 in synthetic cancer patient serum samples were detected in 1.1 h and results correlated well with single-protein ELISAs.
Point-of-care diagnostics based on multiplexed protein measurements face challenges of simple, automated, low-cost, and high-throughput operation with high sensitivity. Herein, we describe an automated, microprocessor-controlled microfluidic immunoarray for simultaneous multiplexed detection of small protein panels in complex samples. A microfluidic sample/reagent delivery cassette was coupled to a 30-microwell detection array to achieve sensitive detection of four prostate cancer biomarker proteins in serum. The proteins are prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), platelet factor-4 (PF-4), and interlukin-6 (IL-6). The six channel system is driven by integrated micropumps controlled by an inexpensive programmable microprocessor. The reagent delivery cassette and detection array feature channels made by precision-cut 0.8 mm silicone gaskets. Single-wall carbon nanotube forests were grown in printed microwells on a pyrolytic graphite detection chip and decorated with capture antibodies. The detection chip is housed in a machined microfluidic chamber with a steel metal shim counter electrode and Ag/AgCl reference electrode for electrochemiluminescent (ECL) measurements. The preloaded sample/reagent cassette automatically delivers antigen proteins, wash buffers, and ECL RuBPY-silica–antibody detection nanoparticles sequentially. An onboard microcontroller controls micropumps and reagent flow to the detection chamber according to a preset program. Detection employs tripropylamine, a sacrificial reductant, while applying 0.95 V vs Ag/AgCl. Resulting ECL light was measured by a CCD camera. Ultralow detection limits of 10–100 fg mL−1 were achieved in simultaneous detection of the four protein in 36 min assays. Results for the four proteins in prostate cancer patient serum gave excellent correlation with those from single-protein ELISA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.