Efforts to introduce more efficient stoves increasingly leverage carbon-finance to scale up dissemination of interventions. We conducted a randomized intervention study to evaluate a Clean Development Mechanism approved stove replacement impact on fuelwood usage, and climate and health-relevant air pollutants. We randomly assigned 187 households to either receive the intervention or to continue using traditional stoves. Measurements of fine particulate matter (PM2.5) and absorbance were conducted in cooking areas, village center and at upwind background site. There were minor and overlapping seasonal differences (post- minus preintervention change) between control and intervention groups for median (95% CI) fuel use (-0.60 (-1.02, -0.22) vs -0.52 (-1.07, 0.00) kg day(-1)), and 24 h absorbance (35 (18, 60) vs 36 (22, 50) × 10(-6) m(-1)); for 24 h PM2.5, there was a higher (139 (61,229) vs 73(-6, 156) μg m(-3))) increase in control compared to intervention homes between the two seasons. Forty percent of the intervention homes continued using traditional stoves. For intervention homes, absorbance-to-mass ratios suggest a higher proportion of black carbon in PM2.5 emitted from intervention compared with traditional stoves. Absent of field-based evaluation, stove interventions may be pursued that fail to realize expected carbon reductions or anticipated health and climate cobenefits.
We present results of an emission characterization effort, completed as part of a larger intervention trial, of a carbon‐finance‐approved program replacing traditional cookstoves with “rocket”‐style natural draft stoves. The 100 emission tests were conducted across 31 households in control and intervention groups, with repeated tests in most households during preintervention and postintervention periods. While mean fine particulate matter (PM2.5) emission factor for intervention stoves was significantly lower than for traditional stoves in baseline measurements, they were only marginally lower than traditional stoves during follow‐up. Intervention stove PM2.5 emissions had a larger contribution from light‐absorbing (elemental) carbon than traditional stoves. Repeated measurements in control households provide evidence for strong seasonality, likely due to differences in fuel moisture/types, in traditional stove emissions, with important implications for study design. Seasonality observed in control household emission factors (baseline > follow‐up) was in the opposite direction as that observed in indoor PM2.5 concentrations (baseline < follow‐up), highlighting that seasonally varying conditions (e.g., ventilation rates) may modify the link between emissions and exposures. Emission factor differences in paired (pre/post) tests from the same households were similar to differences in the medians of entire groups, suggesting variability is dominated by test‐to‐test variation. Emission reductions from intervention stoves were significantly smaller than laboratory performance would suggest or that are required to strongly reduce exposures. Field emissions assessment like that presented here should be prioritized early in technology assessment and development to provide rigorous estimates of the benefits reasonably expected from interventions with the potential for substantial benefits to human health and the environment.
Glutamate is a ubiquitous excitatory neurotransmitter, which is involved in normal physiology, a variety of central nervous system (CNS) functions, including excitotoxicity and neuronal migration. It is implicated in the pathogenesis of various neuropsychiatric disorders including epilepsy, Parkinson's disease, Alzheimer's dementia, schizophrenia and obsessive compulsive disorder (OCD). Over the years, a growing body of evidence has helped researchers understand the mechanisms underlying glutamatergic involvement in the pathogenesis of these disorders. In this review, we attempt to elucidate the role of glutamate in OCD, which is a chronic psychiatric condition with significant morbidity. This article provides current perspectives on the role played by glutamate in the pathogenesis, clinical symptoms and treatment response in OCD, a critical analysis of existing and emerging evidence, both clinical and preclinical, followed by a summary and future directions.
Roadside trash burning is largely unexamined as a factor that influences air quality, radiative forcing, and human health even though it is ubiquitously practiced across many global regions, including throughout India. The objective of this research is to examine characteristics and redox activity of fine particulate matter (PM 2.5) associated with roadside trash burning in Bangalore, India. Emissions from smoldering and flaming roadside trash piles (n = 24) were analyzed for organic and elemental carbon (OC/EC), brown carbon (BrC), and toxicity (i.e. redox activity, measured via the dithiothreitol "DTT" assay). A subset of samples (n = 8) were further assessed for toxicity by a cellular assay (macrophage assay) and also analyzed for trace organic compounds. Results show high variability of chemical composition and toxicity between trash-burning emissions, and characteristic differences from ambient samples. OC/EC ratios for trash-burning emissions range from 0.8 to 1500, while ambient OC/EC ratios were observed at 5.4 ± 1.8. Trace organic compound analyses indicate that emissions from trash-burning piles were frequently composed of aromatic di-acids (likely from burning plastics) and levoglucosan (an indicator of biomass burning), while the ambient sample showed high response from alkanes indicating notable representation from vehicular exhaust. Volume-normalized DTT results (i.e., redox activity normalized by the volume of air pulled through the filter during sampling) were, unsurprisingly, extremely elevated in all trash-burning samples. Interestingly, DTT results suggest that on a per-mass basis, fresh trashburning emissions are an order of magnitude less redox-active than ambient air (13.4 ± 14.8 pmol/min/μgOC for trash burning; 107 ± 25 pmol/min/μgOC for ambient). However, overall results indicate that near trash-burning sources, exposure to redox-active PM can be extremely high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.