Respiratory syncytial virus (RSV) is a common virus that can have varying effects ranging from mild cold-like symptoms to mortality depending on the age and immune status of the individual. We combined mathematical modelling using ordinary differential equations (ODEs) with measurement of RSV infection kinetics in primary well-differentiated human bronchial epithelial cultures in vitro and in immunocompetent and immunosuppressed cotton rats to glean mechanistic details that underlie RSV infection kinetics in the lung. Quantitative analysis of viral titre kinetics in our mathematical model showed that the elimination of infected cells by the adaptive immune response generates unique RSV titre kinetic features including a faster timescale of viral titre clearance than viral production, and a monotonic decrease in the peak RSV titre with decreasing inoculum dose. Parameter estimation in the ODE model using a nonlinear mixed effects approach revealed a very low rate (average single-cell lifetime > 10 days) of cell lysis by RSV before the adaptive immune response is initiated. Our model predicted negligible changes in the RSV titre kinetics at early times post-infection (less than 5 dpi) but a slower decay in RSV titre in immunosuppressed cotton rats compared to that in non-suppressed cotton rats at later times (greater than 5 dpi) in silico. These predictions were in excellent agreement with the experimental results. Our combined approach quantified the importance of the adaptive immune response in suppressing RSV infection in cotton rats, which could be useful in testing RSV vaccine candidates.
Respiratory syncytial virus (RSV) is a common virus that can have varying effects ranging from mild cold-like symptoms to mortality depending on the age and immune status of the individual. We combined mathematical modeling using ordinary differential equations (ODEs) with measurement of RSV infection kinetics in primary well differentiated human airway epithelial (HAE) cultures in vitro and in immunocompetent and immunosuppressed cotton rats to glean mechanistic details that underlie RSV infection kinetics in the lung. Quantitative analysis of viral titer kinetics in our mathematical model showed that the elimination of infected cells by the adaptive immune response generates unique RSV titer kinetic features including a faster time scale of viral titer clearance than viral production, and a monotonic decrease in the peak RSV titer with decreasing inoculum dose. Parameter estimation in the ODE model using a non-linear mixed effects approach revealed a very low rate (average single cell lifetime > 10 days) of cell lysis by RSV before the adaptive immune response is initiated. Our model predicted negligible changes in the RSV titer kinetics on earlier days (< 5 d.p.i) but a slower decay in RSV titer at later days (>5 d.p.i) in immunosuppressed cotton rats compared to that in non-suppressed cotton rats in silico. These predictions were in excellent agreement with the experimental results. Our combined approach quantified the importance of the adaptive immune response in suppressing RSV infection in cotton rats, which could be useful in testing RSV vaccine candidates. ImportanceA major difficulty in developing vaccines against RSV infection is our rudimentary understanding of the mechanisms that underlie RSV infection. We addressed this challenge by developing a mechanistic computational model with predictive powers for describing RSV infection kinetics in cotton rats. The model was constructed synergistically with in vitro and in vivo measurements. The combined framework determined an important role for CD8+ T cells responses in reducing RSV titers in cotton rats. The framework can be used to design future experiments to elucidate mechanisms underlying RSV infection and test outcomes for potential vaccine candidates. In addition, estimation of the model parameters provides quantitative values for parameters of biological and clinical interest such as the replication rate of RSV, the death rate of infected cells, and the average number of new infections initiated by a single infected cell. † Equal contribution * Corresponding authors
Respiratory syncytial virus (RSV) is a common virus that can have varying effects ranging from mild cold-like symptoms to mortality depending on the age and immune status of the individual. We combined mathematical modeling using ordinary differential equations (ODEs) with measurement of RSV infection kinetics in primary well differentiated human airway epithelial (HAE) cultures in vitro and in immunocompetent and immunosuppressed cotton rats to glean mechanistic details that underlie RSV infection kinetics in the lung. Quantitative analysis of viral titer kinetics in our mathematical model showed that the elimination of infected cells by the adaptive immune response generates unique RSV titer kinetic features including a faster time scale of viral titer clearance than viral production, and a monotonic decrease in the peak RSV titer with decreasing inoculum dose. Parameter estimation in the ODE model using a non-linear mixed effects approach revealed a very low rate (average single cell lifetime > 10 days) of cell lysis by RSV before the adaptive immune response is initiated. Our model predicted negligible changes in the RSV titer kinetics on earlier days (< 5 d.p.i) but a slower decay in RSV titer in immunosuppressed cotton rats compared to that in nonsuppressed cotton rats at later days (>5 d.p.i) in silico. These predictions were in excellent agreement with the experimental results. Our combined approach quantified the importance of the adaptive immune response in suppressing RSV infection in cotton rats, which could be useful in testing RSV vaccine candidates. ImportanceA major difficulty in developing vaccines against RSV infection is our rudimentary understanding of the mechanisms that underlie RSV infection. We addressed this challenge by developing a mechanistic computational model with predictive powers for describing RSV infection kinetics in cotton rats. The model was constructed synergistically with in vitro and in vivo measurements. The combined framework determined an important role for CD8+ T cells responses in reducing RSV titers in cotton rats. The framework can be used to design future experiments to elucidate mechanisms underlying RSV infection and test outcomes for potential vaccine candidates. In addition, estimation of the model parameters provides quantitative values for parameters of biological and clinical interest such as the replication rate of RSV, the death rate of infected cells, and the average number of new infections initiated by a single infected cell. † Equal contribution * Corresponding authors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.