The gene VI product (P6) of Cauliflower mosaic virus (CaMV) is a multifunctional protein known to be a major component of cytoplasmic inclusion bodies formed during CaMV infection. Although these inclusions are known to contain virions and are thought to be sites of translation from the CaMV 35S polycistronic RNA intermediate, the precise role of these bodies in the CaMV infection cycle remains unclear. Here, we examine the functionality and intracellular location of a fusion between P6 and GFP (P6-GFP). We initially show that the ability of P6-GFP to transactivate translation is comparable to unmodified P6. Consequently, our work has direct application for the large body of literature in which P6 has been expressed ectopically and its functions characterized. We subsequently found that P6-GFP forms highly motile cytoplasmic inclusion bodies and revealed through fluorescence colocalization studies that these P6-GFP bodies associate with the actin/endoplasmic reticulum network as well as microtubules. We demonstrate that while P6-GFP inclusions traffic along microfilaments, those associated with microtubules appear stationary. Additionally, inhibitor studies reveal that the intracellular movement of P6-GFP inclusions is sensitive to the actin inhibitor, latrunculin B, which also inhibits the formation of local lesions by CaMV in Nicotiana edwardsonii leaves. The motility of P6 along microfilaments represents an entirely new property for this protein, and these results imply a role for P6 in intracellular and cell-to-cell movement of CaMV.
SummaryThe tomato yellow leaf curl virus (TYLCV) found in Israel is a whitefly-transmitted monopartite geminivirus. Although geminiviruses have been found in the nuclei of phloemassociated cells, the mechanism of viral invasion is poorly understood. The possible role of the TYLCV capsid protein (CP), the only known component of the viral coat, in virus transport into the host cell nucleus was investigated by monitoring its specific nuclear accumulation in plant and insect cells. CP was fused to the β-glucuronidase (GUS) reporter enzyme to assay nuclear import in petunia protoplasts, and micro-injection of purified fluorescently labeled CP was used to examine its nuclear uptake in Drosophila embryos. Both assays demonstrated that TYLCV CP is transported into plant-and insect-cell nuclei by an active process of nuclear import via a nuclear localization signal (NLS)-specific pathway. Using the GUS assay and deletion analysis, the TYLCV CP NLS sequence was identified in the amino-terminus of the protein.
Agrobacterium tumefaciens Chry5, which is particularly virulent on soybeans, induces tumors that produce a family of Amadori-type opines that includes deoxyfructosyl glutamine (Dfg) and its lactone, chrysopine (Chy). Cosmid clones mapping to the right of the known oncogenic T-region of pTiChry5 conferred Amadori opine production on tumors induced by the nopaline strain C58. Sequence analysis of DNA held in common among these cosmids identified two 25-bp, direct repeats flanking an 8.5-kb segment of pTiChry5. These probable border sequences are closely related to those of other known T-regions and define a second T-region of pTiChry5, called T-right (TR), that confers production of the Amadoriopines. The oncogenic T-left region (TL) was located precisely by identifying and sequencing the likely border repeats defining this segment. The two T-regions are separated by approximately 15 kb of plasmid DNA. Based on these results, we predicted that pKYRT1, a vir helper plasmid derived from pTiChry5, still contains all of TR and the leftmost 9 kb of TL. Consistent with this hypothesis, transgenic Arabidopsis thaliana plants selected for with a marker encoded by a binary plasmid following transformation with KYRT1 co-inherited production of the Amadori opines at high frequency. All opine-positive transgenic plants also contained TR-DNA, while those plants that lacked TR-DNA failed to produce the opines. Moreover, A. thaliana infected with KYRT1 in which an nptII gene driven by the 35S promoter of Cauliflower mosaic virus was inserted directly into the vir helper plasmid yielded kanamycin-resistant transformants at a low but detectable frequency. These results demonstrate that pKYRT1 is not disarmed, and can transfer Ti plasmid DNA to plants. A new vir helper plasmid was constructed from pTiChry5 by two rounds of sacB-mediated selection for deletion events. This plasmid, called pKPSF2, lacks both of the known T-regions and their borders. pKPSF2 failed to transfer Ti plasmid DNA to plants, but mobilized the T-region of a binary plasmid at an efficiency indistinguishable from those of pKYRT1 and the nopaline-type vir helper plasmid pMP90.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.