Wind turbines (WT) maintenance management is in continuous development to improve the reliability, availability, maintainability and safety (RAMS) of WTs, and to achieve time and cost reductions. The optimisation of the operation reliability involves the supervisory control and data acquisition to guarantee correct levels of RAMS. A fault detection and diagnosis methodology is proposed for large-scale industrial WTs. The method applies the wavelet and Fourier analysis to vibration signals. A number of turbines (up to 3) of the same type will be instrumented in the same wind farm. The data collected from the individual turbines will be fused and analysed together in order to determine the overall reliability of this particular wind farm and wind turbine type. It is expected that data fusion will allow a significant improvement in overall reliability since the value of the information gained from the various condition monitoring systems will be enhanced. Effort will also focus on the successful application of dependable embedded computer systems for the reliable implementation of wind turbine condition monitoring and control technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.