Mobile networks possess information about the users as well as the network. Such information is useful for making the network end-to-end visible and intelligent. Big data analytics can efficiently analyze user and network information, unearth meaningful insights with the help of machine learning tools. Utilizing big data analytics and machine learning, this work contributes in three ways. First, we utilize the call detail records (CDR) data to detect anomalies in the network. For authentication and verification of anomalies, we use k-means clustering, an unsupervised machine learning algorithm. Through effective detection of anomalies, we can proceed to suitable design for resource distribution as well as fault detection and avoidance. Second, we prepare anomaly-free data by removing anomalous activities and train a neural network model. By passing anomaly and anomaly-free data through this model, we observe the effect of anomalous activities in training of the model and also observe mean square error of anomaly and anomaly free data. Lastly, we use an autoregressive integrated moving average (ARIMA) model to predict future traffic for a user. Through simple visualization, we show that anomaly free data better generalizes the learning models and performs better on prediction task.
With the development towards the next generation cellular networks, i.e., 5G, the focus has shifted towards meeting the higher data rate requirements, potential of micro cells and millimeter wave spectrum. The goals for next generation networks are very high data rates, low latency and handling of big data. The achievement of these goals definitely require newer architecture designs, upgraded technologies with possible backward support, better security algorithms and intelligent decision making capability. In this survey, we identify the opportunities which can be provided by 5G networks and discuss the underlying challenges towards implementation and realization of the goals of 5G. This survey also provides a discussion on the recent developments made towards standardization, the architectures which may be potential candidates for deployment and the energy concerns in 5G networks. Finally, the paper presents a big data perspective and the potential of machine learning for optimization and decision making in 5G networks.
Recently Intelligent Tutoring Systems (ITS) and Computer-Supported Collaborative Learning (CSCL) have got much attention in the field of computer science, artificial intelligence, cognitive psychology, and educational technologies. An ITS is a technologically intelligent system that provides an adaptive learning paradigm for an individual learner only, while CSCL is also a technology-driven learning paradigm that supports groups of learners in pertaining knowledge by collaboration. In a multidisciplinary research field-the Learning Sciences, both individual and collaborative learning have their own significance. This research aims to extend ITS for collaborative constructivist view of learning using CSCL. Integrating both design architecture of CSCL and ITS, this research model propose a new conceptual framework underpinning "Intelligent Tutoring Supported Collaborative Learning (ITSCL)". ITSCL extend ITS by supporting multiple learners interacting system. ITSCL support three different types of interaction levels. The first level of interaction supports individual learning by learner-tutor interaction. The second and third level of interaction support collaborative learning, by learner-learner interaction and tutor-group of collaborative learners' interactions, respectively. To evaluate ITSCL, a prototype model was implemented to conduct few experiments. The statistical results extrapolate the learning gains, measured from Paired T-Test and frequency analysis, contend a significant learning gain and improvement in the learning process with enhanced learning performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.