Interstitial heating using magnetic nanoparticles was feasible and well tolerated in patients with locally recurrent prostate cancer. Deposition of nanoparticles in the prostate was highly durable. Further refinement of the technique is necessary to allow application of higher magnetic field strengths.
MFH led to a significant growth inhibition in this orthotopic model of the aggressive MatLyLu tumor variant. Intratumoral deposition of magnetic fluids was found to be stable, allowing for serial MFH treatments without repeated injection. The optimal treatment schedules and temperatures for MFH need to be defined in further studies.
Intraindividual comparison shows that image quality and delineation of prostate cancer at 1.5 T with the use of an endorectal coil in a pelvic phased-array is superior to the higher field strength of 3.0 T with a torso phased-array coil alone. As long as no endorectal coil is available for 3-T imaging, imaging at 1.5 T using the combined endorectal-body phased-array coil will continue to be the gold standard for prostate imaging.
An additive effect was demonstrated for the combined treatment at a radiation dose of 20 Gy, which was equally effective in inhibiting tumor growth as radiation alone with 60 Gy. Serial heat treatments were possible without repeated injection of magnetic fluid. The optimal treatment schedules of this combination regarding temperatures, radiation dose, and fractionation need to be defined in further experimental studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.