The putative attachment protein of the avian pneumovirus that causes turkey rhinotracheitis is, by analogy with mammalian pneumoviruses, expected to be the major antigenic determinant. We report the nucleotide sequence of the attachment (G) protein genes of five different continental European isolates and compare them with the previously published sequence of the G gene for the focal variant of a U.K. isolate. The nucleotide sequences and the predicted amino acid sequences indicate that there are at least two distinct subgroups, similar to the grouping described for human respiratory syncytial (RS) virus. The U.K. and French isolates form one group and the isolates from Spain, Italy and Hungary form a second. The two subgroups can be easily distinguished on the basis of restriction enzyme digestion of PCR-generated products representing the full-length gene. Within the subgroups the predicted G proteins were highly conserved (98"5 to 99"7 % amino acid identity) compared to the levels of identity of RS virus G proteins in the same subgroup (80 to 95 %). Between the avian pneumovirus subgroups described here there was an unexpected degree of divergence, the average amino acid identity between members of the two groups being only 38%. This compares with the 53% conservation seen between members of the RS virus subgroups A and B. Comparison of the predicted amino acid sequences showed that the G proteins of members of the two avian pneumovirus subgroups had similar structural features. All proteins had an amino-terminal membrane anchor and the positions of cysteine residues were highly conserved. The potential importance of the high level of variation between the two subgroups in terms of epidemiology of the disease is discussed.
3The general phenomenon of shell structure in atomic nuclei has been understood since the pioneering work of Goeppert-Mayer, Haxel, Jensen and Suess [1].They realized that the experimental evidence for nuclear magic numbers could be explained by introducing a strong spin-orbit interaction in the nuclear shell model potential.However, our detailed knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), the unique nature of the atomic nucleus as an object composed of two distinct types of fermions can be expressed as enhanced correlations arising between neutrons and protons occupying orbitals with the same quantum numbers. Such correlations have been predicted to favor a new type of nuclear superfluidity; isoscalar neutron-proton pairing [2][3][4][5][6], in addition to normal isovector pairing (see Fig. 1). Despite many experimental efforts these predictions have not been confirmed. Here, we report on the first observation of excited states in N = Z = 46 nucleus 92 Pd. Gamma rays emitted following the 58 Ni( 36 Ar,2n) 92 Pd fusionevaporation reaction were identified using a combination of state-of-the-art highresolution -ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutronproton coupling scheme, different from the previous prediction [2][3][4][5][6]. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling [7,8]) in the ground and low-lying excited states of the heaviest N = Z nuclei. The strong isoscalar neutron-proton correlations in these N = Z nuclei are predicted to have a considerable impact on their level structures, and to influence the dynamics of the stellar rapid proton capture nucleosynthesis process.For all known nuclei, including those residing along the N = Z line up to around mass 80, a detailed analysis of their properties such as binding energies [9] and the spectroscopy of the excited states [10] strongly suggests that normal isovector (T = 1) pairing is dominant at low excitation energies. On the other hand, there are long standing predictions for a change in the heavier N = Z nuclei from a nuclear superfluid dominated by isovector pairing to a structure where isoscalar (T = 0) neutron-proton (np) pairing has a major influence as the mass number increases towards the exotic doubly magic nucleus 100 Sn [2-6], the heaviest N = Z nucleus to be bound. N = Z nuclei with mass number > 90 can only be produced in the laboratory with very low The two-neutron (2n) evaporation reaction channel following formation of the 94 Pd compound nucleus, leading to 92 Pd, was very weakly populated with a relative yield of less than 10 −5 of the total fusion cross section. Gamma rays from decays of excited states in 92 Pd were identified by comparing γ-ray spectra in coincidence with two emitted neutrons and no charged particles with γ-ray spectra in coincidence with oth...
A set of five missense mutations previously identified by nucleotide sequence analysis of subgroup A cold-passaged (cp) respiratory syncytial virus (RSV) has been introduced into a recombinant wild-type strain of RSV. This recombinant virus, designated rA2cp, appears to replicate less efficiently in the upper and lower respiratory tracts of seronegative chimpanzees than either biologically derived or recombinant wild-type RSV. Infection with rA2cp also resulted in significantly less rhinorrhea and cough than infection with wild-type RSV. These findings confirm the role of thecp mutations in attenuation of RSV and identify their usefulness for inclusion in future live attenuated recombinant RSV vaccine candidates.
Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive-and negative-parity bands have been identified in 78 Br. They are interpreted as multiple chiral doublet bands with octupole correlations, which is supported by the microscopic multidimensionally-constrained covariant density functional theory and triaxial particle rotor model calculations. This observation reports the first example of chiral geometry in octupole soft nuclei. DOI: 10.1103/PhysRevLett.116.112501 Spontaneous symmetry breaking is a fundamental concept in nature. As a many-body quantum system, the atomic nucleus carries a wealth of information on fundamental symmetries and symmetry breaking. As one example, chiral symmetry breaking in atomic nuclei has attracted considerable attention and intensive discussion since it was first predicted by Frauendorf and Meng [1]. They pointed out that, in the intrinsic frame of the rotating triaxial nucleus, the total angular momentum vector may lie outside the three principal planes, referred to as chiral geometry. The spontaneous chiral symmetry breaking in the laboratory frame may give rise to pairs of nearly degenerate ΔI ¼ 1 bands with the same parity, i.e., chiral doublet bands. Such chiral doublet bands were first observed in N ¼ 75 isotones [2]. So far, more than 30 experimental candidates have been reported in the A ∼ 80, 100, 130, and 190 mass regions [2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20].Based on constrained triaxial covariant density functional theory (CDFT) calculations, it has been suggested that multiple chiral doublet (MχD) bands can exist in a single nucleus [21][22][23][24][25][26]. The theoretical prediction of MχD bands stimulated lots of experimental efforts [27][28][29][30][31]. The first experimental evidence for MχD bands was reported in 133 Ce [27], which confirmed the manifestation of triaxial shape coexistence in this nucleus. Later, Kuti et al. reported a novel type of MχD bands with the same configuration in 103 Rh [29], which showed that chiral geometry can be robust against the increase of the intrinsic excitation energy.Compared to the A ∼ 130 and 100 mass regions, the A ∼ 80 mass region is a relatively new and less studied territory for the investigation of chiral symmetry breaking in rotating nuclei, with only one report of chiral doublet bands based on the πg 9=2 ⊗ νg 9=2 configuration in odd-odd 80 Br [18]. In 78 Br, the πg 9=2 ⊗ νg 9=2 band was suggested to have an obvious triaxial shape [32], which is suitable for the construction of chiral doublet bands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.