[ 11 C]SNAP-7941 and its radiofluorinated, fluoro-ethyl derivative [ 18 F]FE@SNAP have been developed as the first positron emission tomography tracers for melanin-concentrating hormone receptor 1 (MCHR1) imaging. Accumulation of these MCHR1 PET-tracers in rat brown adipose tissue (BAT) in vivo provided first indication of MCHR1 expression in rodent BAT. To rule out off-target binding, affinity of both MCHR1 ligands toward adrenergic beta-3 receptors (ADRB3) was examined. Further, specific binding of [ 11 C]SNAP-7941 to brown adipocytes and effects of MCHR1 ligands on brown adipocyte activation were investigated. SNAP-7941 and FE@SNAP evinced to be highly selective toward MCHR1. [ 11 C]SNAP-7941 binding to brown adipocytes was shown to be mainly MCHR1-specific. This data strongly indicates MCHR1 expression in rodent BAT and moreover, a peripheral, anti-obesity effect of MCHR1 antagonists directly exerted in BAT is proposed. Moreover, MCHR1 expression in murine brown adipocytes was confirmed by protein and mRNA analysis. We conclude that MCHR1 PET imaging contributes to basic research in endocrinology by elucidating the involvement of the MCH system in peripheral tissues, such as BAT.
The organometallic technetium-99m tricarbonyl core, [99mTc][Tc(CO)3(H2O)3]+, is a versatile precursor for the development of radiotracers for single photon emission computed tomography (SPECT). A drawback of the 99mTc-tricarbonyl core is its lipophilicity, which can influence the pharmacokinetic properties of the SPECT imaging probe. Addition of polar pharmacological modifiers to 99mTc-tricarbonyl conjugates holds the promise to counteract this effect and provide tumor-targeting radiopharmaceuticals with improved hydrophilicities, e.g., resulting in a favorable fast renal excretion in vivo. We applied the “Click-to-Chelate” strategy for the assembly of a novel 99mTc-tricarbonyl labeled conjugate made of the tumor-targeting, modified bombesin binding sequence [Nle14]BBN(7–14) and the carbohydrate sorbitol as a polar modifier. The 99mTc-radiopeptide was evaluated in vitro with PC-3 cells and in Fox-1nu mice bearing PC-3 xenografts including a direct comparison with a reference conjugate lacking the sorbitol moiety. The glycated 99mTc-tricarbonyl peptide conjugate exhibited an increased hydrophilicity as well as a retained affinity toward the Gastrin releasing peptide receptor and cell internalization properties. However, there was no significant difference in vivo in terms of pharmacokinetic properties. In particular, the rate and route of excretion was unaltered in comparison to the more lipophilic reference compound. This could be attributed to the intrinsic properties of the peptide and/or its metabolites. We report a novel glycated (sorbitol-containing) alkyne substrate for the “Click-to-Chelate” methodology, which is potentially of general applicability for the development of 99mTc-tricarbonyl based radiotracers displaying an enhanced hydrophilicity.
Personalized treatment of cancer patients demands specific and validated biomarkers for tumor diagnosis and therapy. The development and validation of such require translational preclinical models that recapitulate human diseases as accurately as possible. Moreover, there is a need for convergence of different (pre)clinical disciplines that openly share their knowledge and methodologies. This review sheds light on the differential perception of biomarkers and gives an overview of currently used models in tracer development and approaches for biomarker discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.