Overload or dysfunction of ubiquitin-proteasome system (UPS) is implicated in mechanisms of neurodegeneration associated with neurodegenerative diseases, e.g. Parkinson and Alzheimer disease, and ischemia-reperfusion injury. The aim of this study was to investigate the possible association between viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells treated with bortezomib, inhibitor of 26S proteasome, and accumulation of ubiquitin-conjugated proteins with respect to direct cytotoxicity of aggregates of ubiquitin-conjugated proteins. Bortezomib-induced death of SH-SY5Y cells was documented after 24 h of treatment while death of T98G cells was delayed up to 48 h. Already after 4 h of treatment of both SH-SY5Y and T98G cells with bortezomib, increased levels of both ubiquitin-conjugated proteins with molecular mass more than 150 kDa and Hsp70 were observed whereas Hsp90 was elevated in T98G cells and decreased in SH-SY5Y cells. With respect to the cell death mechanism, we have documented bortezomib-induced activation of caspase 3 in SH-SY5Y cells that was probably a result of increased expression of pro-apoptotic proteins, PUMA and Noxa. In T98G cells, bortezomib-induced expression of caspase 4, documented after 24 h of treatment, with further activation of caspase 3, observed after 48 h of treatment. The delay in activation of caspase 3 correlated well with the delay of death of T98G cells. Our results do not support the possibility about direct cytotoxicity of aggregates of ubiquitin-conjugated proteins. They are more consistent with a view that proteasome inhibition is associated with both transcription-dependent and -independent changes in expression of pro-apoptotic proteins and consequent cell death initiation associated with caspase 3 activation.
Deregulation of signalling pathways that regulate cell growth, survival, metabolism, and migration can frequently lead to the progression of cancer. Brain tumours are a large group of malignancies characterised by inter- and intratumoral heterogeneity, with glioblastoma (GBM) being the most aggressive and fatal. The present study aimed to characterise the expression of cancer pathway-related genes (n = 84) in glial tumour cell lines (A172, SW1088, and T98G). The transcriptomic data obtained by the qRT-PCR method were compared to different control groups, and the most appropriate control for subsequent interpretation of the obtained results was chosen. We analysed three widely used control groups (non-glioma cells) in glioblastoma research: Human Dermal Fibroblasts (HDFa), Normal Human Astrocytes (NHA), and commercially available mRNAs extracted from healthy human brain tissues (hRNA). The gene expression profiles of individual glioblastoma cell lines may vary due to the selection of a different control group to correlate with. Moreover, we present the original multicriterial decision making (MCDM) for the possible characterization of gene expression profiles. We observed deregulation of 75 genes out of 78 tested in the A172 cell line, while T98G and SW1088 cells exhibited changes in 72 genes. By comparing the delta cycle threshold value of the tumour groups to the mean value of the three controls, only changes in the expression of 26 genes belonging to the following pathways were identified: angiogenesis FGF2; apoptosis APAF1, CFLAR, XIAP; cellular senescence BM1, ETS2, IGFBP5, IGFBP7, SOD1, TBX2; DNA damage and repair ERCC5, PPP1R15A; epithelial to mesenchymal transition SNAI3, SOX10; hypoxia ADM, ARNT, LDHA; metabolism ATP5A1, COX5A, CPT2, PFKL, UQCRFS1; telomeres and telomerase PINX1, TINF2, TNKS, and TNKS2. We identified a human astrocyte cell line and normal human brain tissue as the appropriate control group for an in vitro model, despite the small sample size. A different method of assessing gene expression levels produced the same disparities, highlighting the need for caution when interpreting the accuracy of tumorigenesis markers.
As the commonest type of cancer in Europe and the third most common type of cancer worldwide, colorectal carcinoma (CRC) poses a challenge for numerous scientific studies. At present, the cause of this disease is remains to be elucidated, but early diagnosis is only one solution to prevent serious health complications. As a structural scaffold, the extracellular matrix (ECM) is in direct contact with tumour cells and significantly interferes with tumour progression. During the process of tumorigenesis, the ECM undergoes structural changes in which collagens serve an important role. Their life cycle is regulated by proteolytic enzymes called matrix metalloproteinases (MMPs), which are controlled by tissue inhibitors of metalloproteinases (TIMPs). The present study analysed the gene expression of MMPs (MMP1-2-8-10-13), TIMPs (TIMP1-2-4) and collagens (COL1A1 and COL3A1) and the correlation with biochemical parameters in the adjacent rectal tissue (ART) of patients with CRC. The patients who underwent standard neoadjuvant pre-therapy showed increased concentrations of collagen in the normal ART. The mRNA levels of COL3A1, TIMP1 and TIMP2 were significantly higher in the ART of CRC patients (with or without pre-therapy) when compared with the control group. This finding suggested that TIMPs served an important role in the regulation of MMPs and in the modification of collagen content in the ECM. Despite the small data set, the present study provided insights into the transcriptomic relationships between the individual genes that are an integral part of the ECM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.