We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.
Highlights d NR supplementation in aged subjects augments the skeletal muscle NAD + metabolome d NR supplementation does not affect skeletal muscle mitochondrial bioenergetics d NR supplementation reduces levels of circulating inflammatory cytokines
Graphical Abstract Highlights d Tumorigenesis depends on functional OXPHOS d OXPHOS-derived ATP is not required for tumor formation d DHODH-driven pyrimidine biosynthesis requires CoQ redoxcycling d CoQ redox-cycling via OXPHOS drives tumorigenesis through pyrimidine biosynthesis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.