Starting from the notion of discriminantly separable polynomials of degree two in each of three variables, we construct a class of integrable dynamical systems. These systems can be integrated explicitly in genus two theta-functions in a procedure which is similar to the classical one for the Kowalevski top. The discriminnatly separable polynomials play the role of the Kowalevski fundamental equation. The natural examples include the Sokolov systems and the Jurdjevic elasticae.A partir de la notion des polynômes avec les discriminants séparables qui sont du second degré par rapport chacune de trois variables, nous construisons une classe des systemes dynamiques. On peut résoudre explicitement ces systemes via les fonctions thêta de genre 2, par une procédure similaire cette classique pour la toupie de Kowalevski. Les polynômes avec les discriminants séparables jouent le rôle de l'équation fondamentale de Kowalevski. Les exemples naturels incluent les systemes de Sokolov et leś elastiques de Jurdjevic.
A new examples of integrable dynamical systems are constructed. An integration procedure leading to genus two theta-functions is presented. It is based on a recent notion of discriminantly separable polynomials. They have appeared in a recent reconsideration of the celebrated Kowalevski top, and their role here is analogue to the situation with the classical Kowalevski integration procedure.
The purpose is to ensure that a continuous convex contraction mapping of order two in b-metric spaces has a unique fixed point. Moreover, this result is generalized for convex contractions of order n in b-metric spaces and also in almost and quasi b-metric spaces.
In this manuscript, we introduce almost b-metric spaces and prove modifications of fixed point theorems for Reich and Hardy–Rogers type contractions. We present an approach generalizing some fixed point theorems to the case of almost b-metric spaces by reducing almost b-metrics to the corresponding b-metrics. Later, we show that this approach can not work for all kinds of contractions. To confirm this, we present a proof in which the contraction condition is such that it cannot be reduced to corresponding b-metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.